A Market Design Approach to the HFT Debate: The Case for Frequent Batch Auctions

Eric Budish, University of Chicago

ECMI Annual Conference, National Bank of Belgium, Brussels Oct 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The HFT Arms Race

- In 2010, Spread Networks invests \$300mm to dig a high-speed fiber optic cable from NYC to Chicago.
- Shaves round-trip data transmission time ... from 16ms to 13ms.
- Industry observers: 3ms is an "eternity".
- Joke at the time: next innovation will be to dig a tunnel, "avoiding the planet's pesky curvature".
- Joke isn't that funny ... Spread's cable is already obsolete!
- ▶ Not tunnels, but microwaves (first 10ms, then 9ms, now 8ms).
- Analogous races occurring throughout the financial system
- Last week alone
 - "Speed-of-Light Trading Expands in Europe with McKay Network" (Bloomberg)
 - "Run EDGAR Run: SEC Dissemination in a High Frequency World" (Chicago Booth Working Paper)

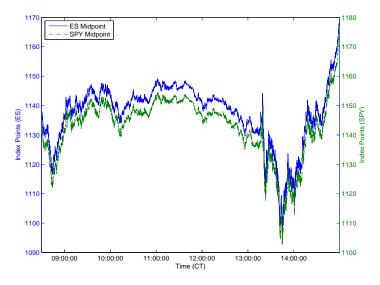
The HFT Arms Race

The HFT Arms Race: Market Design Perspective

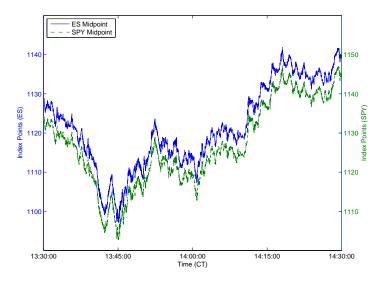
- We examine the HFT arms race from the perspective of market design.
 - We assume that HFT's are optimizing with respect to market rules as they're presently given
 - But, ask whether these are the right rules
 - Avoids much of the "is HFT good or evil?" that seems to dominate the discussion of HFT
 - Instead, ask at a deeper level what is it about market design that incentivizes arms race behavior, and is this design optimal
- Central point: HFT arms race is a symptom of a basic flaw in modern financial market design: continuous-time trading.
- Proposal: discrete-time trading.
 - Replace continuous-time limit order books with *discrete-time* frequent batch auctions: uniform-price double auctions conducted at frequent but discrete time intervals, e.g., every 1 second or 100ms.

Frequent Batch Auctions

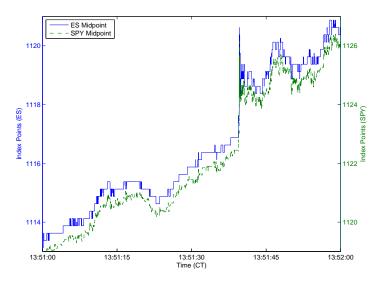
A simple idea: discrete-time trading.

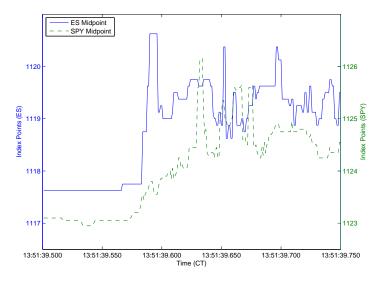

- 1. Direct-feed millisecond level data: Continuous limit-order books don't actually "work" in continuous time
 - Market correlations completely break down
 - Frequent mechanical arbitrage opportunities
- 2. Mechanical arbs -> arms race. Arms race looks like a "constant"
- 3. Theory model: critique of the CLOB market design
 - Mechanical arbs are "built in" to the market design. Sniping.
 - Harms liquidity (spreads, depth)
 - Induces a never-ending arms race for speed
- 4. Frequent Batch Auctions as a market design response
 - Stops the arms race
 - Competition on speed -> competition on price. No sniping.
 - Enhances liquidity and social welfare

Frequent Batch Auctions


A simple idea: discrete-time trading.

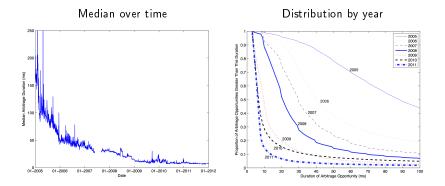
- 1. Direct-feed millisecond level data: Continuous limit-order books don't actually "work" in continuous time
 - Market correlations completely break down
 - Frequent mechanical arbitrage opportunities
- 2. Mechanical arbs -> arms race. Arms race looks like a "constant"
- 3. Theory model: critique of the CLOB market design
 - Mechanical arbs are "built in" to the market design. Sniping.
 - Harms liquidity (spreads, depth)
 - Induces a never-ending arms race for speed
- 4. Frequent Batch Auctions as a market design response
 - Stops the arms race
 - Competition on speed -> competition on price. No sniping.
 - Enhances liquidity and social welfare


Market Correlations Break Down at High Frequency ES vs. SPY: 1 Day

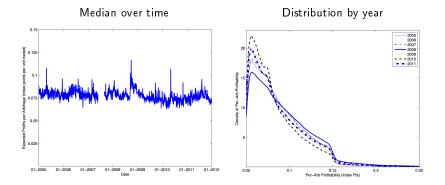

Market Correlations Break Down at High Frequency ES vs. SPY: 1 hour

Market Correlations Break Down at High Frequency ES vs. SPY: 1 minute

Market Correlations Break Down at High Frequency ES vs. SPY: 250 milliseconds

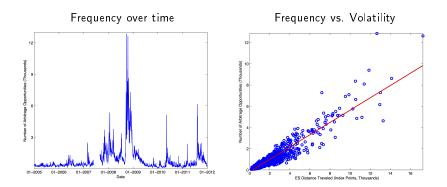


Frequent Batch Auctions

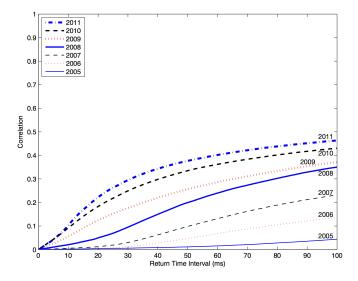

A simple idea: discrete-time trading.

- 1. Direct-feed millisecond level data: Continuous limit-order books don't actually "work" in continuous time
 - Market correlations completely break down
 - Frequent mechanical arbitrage opportunities
- 2. Mechanical arbs -> arms race. Arms race looks like a "constant"
- 3. Theory model: critique of the CLOB market design
 - Mechanical arbs are "built in" to the market design. Sniping.
 - Harms liquidity (spreads, depth)
 - Induces a never-ending arms race for speed
- 4. Frequent Batch Auctions as a market design response
 - Stops the arms race
 - Competition on speed -> competition on price. No sniping.
 - Enhances liquidity and social welfare

Arb Durations over Time: 2005-2011



Arb Per-Unit Profits over Time: 2005-2011



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Arb Frequency over Time: 2005-2011

Correlation Breakdown Over Time: 2005-2011

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Arms Race is a "Constant" of the Market Design

- Results suggest that the arms race is a mechanical "constant" of the continuous limit order book.
 - Rather than a profit opportunity that is competed away over time
- Correlation Breakdown
 - Competition does increase the speed with which information is incorporated from one security price into another security price
 - Competition does not eliminate correlation breakdown
- Mechanical arbitrage
 - Competition does increase the speed requirements for capturing arbs ("raises the bar")
 - Competition does not reduce the size or frequency of arb opportunities
- These facts both inform and are explained by our model

Total Size of the Arms Race Prize

- Estimate annual value of ES-SPY arbitrage is \$75mm (we suspect underestimate, details in paper)
- And ES-SPY is just the tip of the iceberg in the race for speed:
- 1. Hundreds of trades very similar to ES-SPY: highly correlated, highly liquid
- 2. Fragmented equity markets: can arbitrage SPY on NYSE against SPY on NASDAQ! Even simpler than ES-SPY.
- 3. Correlations that are high but far from one can also be exploited in a statistical sense. Example: GS-MS
- 4. Race to top of book (artifact of minimum price tick)
- 5. Race to respond to public news (eg Business Wire, Fed)

We don't attempt to put a precise estimate on the total prize at stake in the arms race, but common sense extrapolation from our ES-SPY estimates suggest that the sums are substantial

Frequent Batch Auctions

A simple idea: discrete-time trading.

- 1. Direct-feed millisecond level data: Continuous limit-order books don't actually "work" in continuous time
 - Market correlations completely break down
 - Frequent mechanical arbitrage opportunities
- 2. Mechanical arbs -> arms race. Arms race looks like a "constant"
- 3. Theory model: critique of the CLOB market design
 - Mechanical arbs are "built in" to the market design. Sniping.
 - Harms liquidity (spreads, depth)
 - Induces a never-ending arms race for speed
- 4. Frequent Batch Auctions as a market design response
 - Stops the arms race
 - Competition on speed -> competition on price. No sniping.
 - Enhances liquidity and social welfare

Model: Key Idea

Key idea: mechanical arbitrage opportunities like ES-SPY are "built in" to the CLOB. The profits from these arbitrage opportunities harm liquidity provision.

- ▶ Why? Consider the race from a liquidity provider's perspective
 - Suppose there is a publicly observable news event that causes his quotes to become "stale"
 - E.g., a change in the price of a highly correlated security (ES/SPY), central bank announcement, company announcement
 - ▶ 1 of him, trying to adjust his stale quotes
 - Many others, trying to "snipe" his stale quotes
 - In a continuous limit order book, messages are processed one-at-a-time in *serial* ...
 - so the 1 usually loses the race against the Many ...
 - Even if he, too, is at the cutting edge of speed
- Hence, in a CLOB, even symmetrically observed public information creates arbitrage rents

Model: Key Idea

- This technical cost of providing liquidity "sniping" is incremental to the usual fundamental costs of providing liquidity
 - Asymmetric information, inventory costs, search costs
- In a competitive market, sniping costs get passed on to investors
 - Thinner markets, wider bid-ask spreads
- Sniping creates a never-ending race for speed
 - Snipers: win race to pick off stale quotes
 - Liquidity providers: get out of the way of the snipers!
- Ultimately, in equilibrium of our model, all of the \$ spent in the arms race come out of the pockets of investors
 - Arms-race prize = expenditures on speed = cost to investors
 - Remember: arms-race profits have to come from somewhere

What's the Market Failure?

Chicago question: isn't the arms race just healthy competition? what's the market failure?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

What's the Market Failure?

Market Failure 1: Sniping

- Mechanical arb opportunities are "built in" to CLOB market design
- These arb opportunities violate weak-form EMH (Fama, 1970)
- Market looks highly efficient in time space, but it isn't efficient in volume space
 - Lots of volume gets transacted at the instant prices become stale
- HFTs earn rents from symmetrically observed public information
 - Even for public / technical info (e.g., a jump in ES): somebody is always first to react

Market Failure 2: Arms Race

- The arb rents then induce an arms race for speed
- Mathematically, a prisoners' dilemma

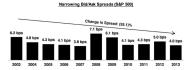
Model: Additional Remarks

The Arms-Race is a "Constant"

- Comparative static: the negative effects of the arms race do not depend on either
 - the cost of speed (if speed is cheap, there will be more entry)
 - the magnitude of speed improvements (seconds, milliseconds, microseconds, nanoseconds, ...)
- The problem we identify is an equilibrium feature of continuous limit order books
 - not competed away as HFTs get faster and faster
 - ties in nicely with empirical results
 - Takeaway: the race for speed will never end as long as we have continuous-time trading

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Model: Additional Remarks


Role of HFTs

- In our model HFTs endogenously perform two functions
 - Useful: liquidity provision / price discovery
 - Rent-seeking: picking off stale quotes
- ► The rent-seeking seems like zero-sum activity among HFTs
 - but we show that it ultimately harms real investors
- Frequent batching preserves the useful function but eliminates the rent seeking function (or at least reduces)
- Nuance
 - Our results *do not* imply that on net HFT has been negative for liquidity or social welfare.
 - Our results do say that sniping is negative for liquidity and that the speed race is socially wasteful.

Remark: Empirical Evidence of Effect of HFT on Liquidity Consistent with "IT Good, Speed Race Bad"

Virtu IPO Filing (Spreads)

Angel, Harris and Spatt (Cost to Trade Large Blocks)

Average Transaction Cost Estimate for 1M Shares in a \$30 Stock

Source: Authors' analysis of Ancerno trade data

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

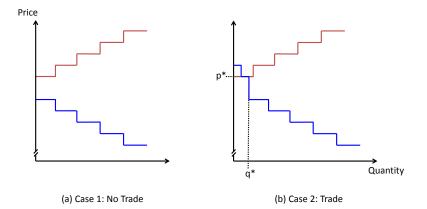
-

Frequent Batch Auctions

A simple idea: discrete-time trading.

- 1. Direct-feed millisecond level data: Continuous limit-order books don't actually "work" in continuous time
 - Market correlations completely break down
 - Frequent mechanical arbitrage opportunities
- 2. Mechanical arbs -> arms race. Arms race looks like a "constant
- 3. Theory model: critique of the CLOB market design
 - Mechanical arbs are "built in" to the market design. Sniping.
 - Harms liquidity (spreads, depth)
 - Induces a never-ending arms race for speed
- 4. Frequent Batch Auctions as a market design response
 - Stops the arms race
 - Competition on speed -> competition on price. No sniping.
 - Enhances liquidity and social welfare

Frequent Batch Auctions: Overview


- ▶ High level: analogous to a CLOB, except time is discrete
- Discrete time then necessitates batch processing, using an auction

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Frequent Batch Auctions: Definition

- The trading day is divided into equal-length discrete batch intervals, of length e.g. 1 second or 100ms.
- During the batch interval traders submits bids and asks
 - Can be freely modified, withdrawn, etc.
 - ► If an order is not executed in the batch at time t, it automatically carries over for t + 1, t + 2,...,
- At the end of each interval, the exchange "batches" all of the outstanding orders, and computes market-level supply and demand curves
- If supply and demand intersect, then all transactions occur at the same market-clearing price ("uniform price")
 - Priority: still price-time, but treat time as discrete. Orders submitted in the same batch interval have the same priority. Rationing is pro-rata.
- Information policy: orders are not visible during the batch interval. Aggregate demand and supply are announced at the end.
 - Analogous to current practice under the continuous limit-order book

Frequent Batch Auctions: Illustrated

▲日 ▶ ▲ 聞 ▶ ▲ 目 ▶ ▲ 目 ▶ ▲ 国 ▶ ▲ 国 ▶

Frequent Batching Directly Solves the Problems with Continuous Trading

Reason 1: Discrete-time reduces value of tiny speed advantages

- Suppose there are two traders: one is faster than the other by 1ms
 - Continuous market: whenever anything happens, faster trader gets to act first.
 - Discrete market: most news events, either both slow and fast have plenty of time to react, or neither can react by end of interval
 - News has to occur at very precise moment in batch interval to give fast trader an advantage
 - If batch interval is 1 second, a 1 millisecond speed advantage is only ¹/₁₀₀₀ th as likely to matter
 - ► -> No more arms race

Frequent Batching Directly Solves the Problems with Continuous Trading

Reason 2: Batch auctions eliminate sniping

- Ex: ES jumps at 10:00:00.000am
 - Continuous market: competition manifests in a race to react in SPY market. Someone is always first.
 - Batched market: competition in the auction simply drives the price of SPY to its new correct level for 10:00:01.000.
- Notice: both fast and slow liquidity providers protected from sniping
 - Fast liquidity providers: plenty of time to cancel their quotes if there is news
 - Slow liquidity providers: even if something happens in the $\frac{1}{1000}$ th of the batch interval where they don't see it and fast traders do, they are protected by price competition in the auction.

(日) (伊) (日) (日) (日) (0) (0)

No more sniping -> improved liquidity

Equilibrium Costs and Benefits of Frequent Batch Auctions

Benefits

- Enhanced liquidity
 - Narrower spreads
 - Increased depth
- Eliminate socially wasteful arms race
- Costs
 - Investors must wait until the end of the batch interval to transact

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Computational Benefits of Frequent Batching

- ► Overall
 - Continuous-time markets implicitly assume that computers and communications technology are infinitely fast.
 - Discrete time respects the limits of computers and communications. Computers are fast but not infinitely so.
- Algorithmic traders
 - Continuous: Always uncertain about current state; temptation to trade off robustness for speed (MacKenzie article)
 - Discrete: Everyone knows state at time t before decision at time t + 1
- Exchanges
 - Continuous: Computational task is mathematically impossible; latencies and backlog unavoidable
 - Discrete: Computation is easy
- Regulator
 - Continuous: Audit trail is difficult to parse; who knew what when? in what order did events occur across markets?
 - Discrete: Simple audit trail; state at t, t + 1,... (e.g., recent debates re dark pools, PFOF, SIP vs. Direct Feed)

Policy Debates Cleaned Up By Discrete Time

- Clock Synchorinization across exchanges
 - Continuous-time: challenging.
 - Discrete-time: trivial.
- Exchange Message Priority Rules
 - Continuous-time: details of message priority matter. Book updates vs. trade confirmation messages. CME controversy.
 - Discrete-time: issue goes away. plenty of time to disseminate all of the relevant info.
- "Level Playing Field" in access to info
 - Continuous-time: even if in principle info is released to all simultaneously, someone receives / acts on it first. arbitrage rents even from symmetrically observed public information.
 - Discrete-time: restores possibility of meaningfully symmetric information.
- Payment for order flow, Dark Pool debates
 - Continuous time: paper trail makes it hard for investors to know whether they got a fair price, versus a stale price
 - Discrete time: paper trail clean. Easier to discover if exploited.

Alternative Responses to the HFT Arms Race

- ► Tobin Tax
 - Does partially mitigate sniping
 - But: cost of tax gets passed on to investors
- Random delay
 - Does mitigate incentive to invest in speed
 - Does not mitigate sniping
 - Each message to snipe is like a lottery ticket
 - Explosion in message traffic
- Message-to-trade ratios
 - Hard to analyze
 - But: note that high message-to-trade ratios are equilibrium feature of CLOB
- Minimum resting times
 - Exacerbates sniping
- IEX speed bump + price sliding to NBBO midpoint
 - Ingenious, eliminates sniping
 - But, only works while IEX is small relative to the rest of the continuous market (free-rides off price discovery elsewhere)

So, What Next?

- ▶ How do we get from continuous-time -> discrete-time?
- Approach 1: private sector innovation.
 - Another Chicago question: if this is such a good idea, why hasn't an exchange already tried it?
 - Potential frictions:
 - Coordination challenge
 - Regulatory ambiguities
 - Vested interests in the current market structure
- Approach 2: regulatory intervention
 - Potential friction: chicken-and-egg problem
 - Regulatory authorities want a high level of proof (rightly so).
 - But, to fully prove the case, someone has to try it first.
- Two things we can hopefully all agree on
 - 1. Value of a Pilot Test of Frequent Batch Auctions
 - 2. HFT Data Should Be More Easily Available to Academic Researchers

Summary

- ▶ We take a market design perspective to the HFT arms race.
- Root problem isn't "evil HFTs", it's continuous-time / serial-process trading.
- Alternative: discrete-time / batch-process trading
- 1. Direct-feed data: continuous-time markets don't actually work in continuous time: correlations completely break down; frequent mechanical arbs; never-ending arms race
- 2. Theory: root cause is the CLOB market design
 - Arms race is a never-ending, equilibrium feature of the CLOB
 - Arms race harms liquidity and is socially wasteful
- 3. Frequent Batch Auctions as a market design response
 - Benefits: eliminates sniping, stops arms race, enhances liquidity, computational advantages
 - Costs: investors must wait a small amount of time to trade, unintended consequences

Concluding Thought

There is enormous inertia—a tyranny of the status quo—in private and especially governmental arrangements. Only a crisis—actual or perceived—produces real change. When that crisis occurs, the actions that are taken depend on the ideas that are lying around. That, I believe, is our basic function [as economists]: to develop alternatives to existing policies, to keep them alive and available until the politically impossible becomes politically inevitable.

- Milton Friedman, Capitalism and Freedom