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Abstract 

Corporate bonds’ book-to-market ratios predict returns computed from transaction prices. 
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1. Introduction 

Research spanning three decades features ‘book-to-market’ as a key driver of the cross-section 
of equity returns. Because equities lack accurate models of risk premia, assessing whether risk 
or mispricing explains equity book-to-market’s return correlation is a heroic task. By contrast, 
with corporate bonds, which we show exhibit a similar book-to-market correlation, assessment 
of the competing theories is far simpler. For one, fair prices are easier to infer for bonds than 
for equities. Indeed, bond dealers typically derive quotes and marks for bonds with ‘matrix pric-
ing’ — in which a bond’s fair price is a time varying function of many bond characteristics that 
influence other bonds’ prices. 

Matrix pricing of a bond’s fair value is only possible because the magnitude and timing of future 
cash flows are more transparent for bonds than for equities. The future cash flows of many 
bonds are also known with relative certainty; for the senior bonds we focus on, only extreme 
and infrequent outcomes for the economy or a company materially affect the likelihood of 
meeting payment promises. Discount rate variation thus has far more influence over these 
bonds’ monthly returns than changes in cash flow projections, facilitating risk measurement 
compared to equities. 

To this end, we define the ‘bond book-to-market ratio’ (‘BBM’) as the bond’s book value divided 
by its market price, which positively predicts a bond’s return. (Book value, an amortising issue 
price, linearly converges to the bond’s face value at maturity.) BBM’s 5 % per year extreme-
quintile return spread is almost as large as equity’s familiar book-to-market spread and exhibits 
a greater Sharpe ratio (0.9). It is also far larger than the quintiles’ yield spread from bonds’ 
promised payments, even for investment-grade bonds. Indeed, credit risk, which we control 
for, hardly alters BBM signal efficacy. 

Abundant controls and novel tests cast additional doubt on risk mismeasurement as the source 
of BBM’s significant raw and risk-adjusted spreads. For example, no risk story explains why the 
equity-hedged bond returns implicit in corporate bond structural models exhibit a BBM anom-
aly of the same magnitude as unhedged bond returns; or why inclusion of a bond version of 
equity’s book-to-market factor, HML, leavess a significant alpha in time series regressions of 
BBM return spreads on factors. 

Tax and liquidity premia do not explain the anomaly either: high BBM bonds tend to be taxed 
less and traded more than their low BBM counterparts. Also, their round-trip institutional trad-
ing costs are about the same (5 bp higher for the highest BBM quintile), while regressions em-
ploying interactions between liquidity and BBM show that bonds with high vs. low bid-ask 
spreads, trading volume, or numbers of trades exhibit similar degrees of BBM return predicta-
bility. However, bonds with more negative serial covariances (‘gamma’) at high return frequen-
cies have greater BBM spreads. 

BBM is one when a bond is issued, then rises above or falls below one due to changing economic 
forces or sentiment. If BBM broadly proxies for omitted controls, BBM signals should predict 
returns when implemented with modest delay. Because delays of a month or two torpedo BBM 
signal efficacy, BBM’s anomaly cannot stem from BBM serving as an omitted control for most 
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bonds within BBM’s extreme quintiles. BBM evolves too slowly to render a delayed BBM signal 
so ineffective if it played this role. Likewise, BBM cannot proxy for the omitted risk/liquidity 
controls of a few bonds that exit BBM’s extreme quintiles each month, thus altering their 
premia. In this case, their changing risk/liquidity premia, needed to account for delay’s effect 
on alpha’s magnitude, would be far too large with no delay and change too rapidly to qualify as 
time-varying bond risk/liquidity premia. 

By contrast, if sentiment materially distorts a bond’s price, the effect is unlikely to persist, as 
arbitrage and mean reversion in sentiment force convergence to fair value. Hence, sentiment-
driven low BBM ratios tend to rise, making risk-adjusted returns abnormally low; sentiment-
driven high BBM ratios tend to fall, making returns abnormally high. Plausibly, sentiment’s price 
distortions apply to only a few of BBM’s extreme-quintile bonds, requiring distortions to be 
large to account for BBM’s quintile spreads. In this case, BBM likely influences quintile returns 
only briefly because the vast majority of bonds caught up in the extreme quintiles’ wide nets 
are priced fairly. Such bonds have no reason to share the quintile-exiting convergence to fair 
value of their grossly mispriced siblings. 

Corporate bonds’ thin trading has hindered research attempting to use transaction prices to 
measure monthly returns and strategy performance. We employ transaction prices from the 
relatively comprehensive TRACE database. Prior studies employing TRACE focus mostly on its 
more liquid bonds1. Constructing monthly returns for bonds that trade nearly every day, often 
multiple times, is straightforward. However, studies of such bonds cannot draw unbiased con-
clusions since liquidity could be correlated with bonds’ returns or control variables. Filtering a 
sample ex-post for its most liquid bonds could lead to conclusions that do not even apply to the 
narrow set of bonds studied. 

To avoid liquidity filters, we impute monthly returns using the martingale property of fair risk-
adjusted asset prices2. The property implies that the first and last transaction price of each 
month can substitute as unbiased estimates of the numerator (end-of-month price) and de-
nominator (beginning-of-month price) of each bond’s monthly return calculation. If a bond’s 
current yield (interest earned/price) matched its expected return, TRACE’s ‘flat’ price, i.e. bond 
price excluding accrued due, is a perfect martingale. In this case, the bond’s imputed, unbiased 
beginning- and end-of-month flat prices generate noisy return estimates that have a small up-
ward bias due to Jensen’s inequality.  

 
1 Chordia et al. (2017) use a mix of dealer quotes and bonds in TRACE that trade in the last five trading days of the 
month. Bao et al. (2011) require a bond to trade on at least 75 % of its relevant business days. Israel et al. (2018) 
select a monthly representative bond for each issuer based on seniority, maturity, age, and size. Schaefer and 
Strebulaev (2008) use prices contained in the most popular bond indices. Since bonds often do not trade for long 
periods, indices are partly built around mid-spread marks of traders’ models that are divorced from nearby trans-
actions. 
2 Note that the martingale property holds only under the null hypothesis of market efficiency. Behavioral-based 
return anomalies, the alternative hypothesis for which we present evidence, rejects efficiency. However, the al-
ternative hypothesis is irrelevant for classical statistical tests and has no bearing on whether the martingale as-
sumption is appropriate here. 
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Current yields can differ from a bond’s expected return. For example, riskless bonds issued at 
par can become discount bonds, generating higher BBMs when interest rates increase. Yet, 
riskless discount bonds have flat prices that converge to par at maturity. Such violations of the 
martingale property imply that our use of intra-month transactions to impute monthly prices 
and returns tends to understate high BBM bonds’ full-month returns and overstate low BBM 
bonds’ full-month returns. The same insight applies when market-wide credit spreads expand 
or shrink after issuance. Hence, the BBM return spread imputed with intra-month prices con-
servatively estimates the true return spread for the full month. A BBM effect in end-of-month 
trader quotes further supports our claim. 

Risk-adjusted profits from the monthly-rebalanced BBM trading strategy do not survive trans-
action costs. Such costs may deter arbitrageurs from exploiting BBM. Yet, buy-and-hold ver-
sions of the strategy survive the transaction costs incurred by larger trades, enhancing overall 
net performance if such trades avoid additional short sales constraints and costs3. Modest tilts 
of long-only portfolios towards high BBM and away from low BBM bonds can avoid short sales 
and enhance performance. 

Arbitrage can prevent liquid bonds’ prices from falling prey to sentiment’s distortions. Earlier, 
we noted that one of our liquidity measures, gamma, alters BBM strategy efficacy. This is not a 
liquidity premium as enhanced efficacy means illiquid high BBM bonds earn higher returns but 
illiquid low BBM bonds earn lower returns. Illiquidity serves only as a friction that deters arbi-
trageurs from correcting the smaller bond price distortions sentiment might cause. But small 
distortions can grow into larger distortions, becoming attractive targets for correction — par-
ticularly when liquidity improves. 

A 50-year literature relates equity return anomalies to attributes4. In contrast to this abundant 
literature, research on similar issues in the bond market is sparse. For US government bonds, 
research on informational efficiency includes Fama and Bliss (1987) and Cochrane and Piazzesi 
(2005), who show that forward rates predict returns, while Joslin et al. (2014) document that 
forward rates do not span risk premia. Cieslak and Povala (2015) enhance this return predicta-
bility by accounting for long-term inflation. In the cross-section, Asness et al. (2013) uncover 
value and momentum effects in government bond indices, while Brooks and Moskowitz (2017) 
find that value, momentum, and carry factors help predict government bond returns outside 
the US. Finally, Brooks et al. (2020) show that exposure to traditional risk factors largely explains 
the active returns of fixed income managers. 

 
3 Asquith et al. (2013) show that the cost of shorting corporate bonds is comparable to that of stocks. 
4 Harvey et al. (2016) and Green et al. (2013) summarise over 300 return predictors, like earnings surprises (Ball 
and Brown, 1968), size (Banz, 1981), book-to-market (Fama and French, 1992), momentum (Jegadeesh and Titman, 
1993), accruals (Sloan, 1996), cash-flow-to-price (Hou et al., 2011), earnings yield (Basu, 1983), and gross profita-
bility (Novy-Marx, 2013). In addition, Fritzemeier (1936), Bachrach and Galai (1979), Basu (1978), Dubofsky and 
French (1988), and Lamont (1998) study price-related anomalies. In our sample period, the book-to-market equity 
anomaly has reversed. Value minus growth quintile spreads (for the equities associated with the bonds in our 
sample) are –13 bp/month (equal-weighted) and –29 bp/month (value-weighed), while Fama and French’s HML 
earned –24 bp/month, with all three insignificant. 
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Research on whether corporate bond prices reflect public information and on which corporate 
bond characteristics account for their returns’ cross-section is nascent. In Gebhardt et al. 
(2005), bonds with high default risk and distant maturities earn higher returns. Chordia et al. 
(2017), Jostova et al. (2013), Bai et al. (2019), and Bali et al. (2019) show that bond returns 
correlate with past bond returns. Choi and Kim (2018), Israel et al. (2018), Avramov et al. (2019), 
and Bali et al. (2020) study bond factors and anomalies, while Bretscher et al. (2020) show that 
estimating firms’ capital structures with debt market values resolves corporate finance puzzles. 
Labelling bond book-to-market research as ‘nascent’ is hyperbole: Israel et al. (2018) refer to 
the yield spread within bonds’ credit categories as ‘value’. Houweling and van Zundert (2017) 
use a bond book-to-market factor in a robustness test. 

We adjust BBM trading profits for risk and liquidity with two approaches. The first uses cross-
sectional Fama and MacBeth (1973, ‘FM’) regressions. These control for the bond attributes 
listed in the paper’s abstract, as well as other premia attributes tied to liquidity and equity re-
turns — like equity beta, equity market capitalisation, equity book-to-market, accruals, earn-
ings surprise, earnings yield, gross profitability, past equity returns, and industry. The second 
adjusts for risk with time series factor models. The latter include the Bai, Bali and Wen (2019, 
‘BBW’) factor model, both with and without augmentation by a term structure factor, two ver-
sions of a one-factor ‘CAPM’ model employing an aggregate bond market index, two versions 
of a two-factor model which adds equity HML to the CAPM model, and a 21-factor model sub-
suming Houweling and van Zundert’s (2017) and Bektić et al.’s (2019) factors. BBM strategy 
profits remain significant with factor risk adjustments. Like equity book-to-market, factor-ad-
justed profits are larger for ‘small bonds’. 

The adjusted profits are not contaminated by market microstructure biases or off-market pric-
ing — offered to favoured customers or from central dealers. They are also not due to long-
term return reversals (Bali et al., 2019). Lastly, for the 20 % of bonds that are closest to default, 
BBM has about the same efficacy as it does for the sample’s complementary bonds. The irrele-
vance of default risk for BBM efficacy, as well as its similar efficacy for investment-grade and 
non-investment-grade bonds, casts doubt on omitted risk controls as the source of the BBM 
anomaly. 

BBM does not predict US Treasury returns, indicating that controls adequately capture term 
structure effects. We also show that imputing monthly returns for Treasuries, from their intra-
month prices at the transaction dates of our sample’s more thinly traded corporate bonds, 
leads to the same ‘non-result’. Robustness tests show that BBM is a better predictor of the risk-
adjusted returns of a universe of all corporate bonds, including the junior, secured, and putta-
ble bonds that academic studies typically avoid—compared to bonds that are senior, unse-
cured, and lacking exotic options. 
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2. Data and methodology 

Prices for signals and bond returns largely come from TRACE’s enhanced (pre-April 2020) and 
standard databases. TRACE’s daily data are from January 2003 to August 2020 for trading sig-
nals, and from February 2003 to September 2020 for returns — with July to December 2002 
used for the initial momentum control. We mostly focus on senior, unsecured, fixed-coupon 
bonds with no embedded options other than (typically, make-whole) call provisions (e.g., BBW, 
2019; Chung et al., 2019). With necessary filters, outlined below, this bond-type covers an un-
balanced panel of 8 925 different bonds (most existing for a limited portion of the sample pe-
riod), 838 firms, and 458 139 bond-month observations5. One table also studies all TRACE fixed-
coupon bonds, covering 565 093 observations. 

Both TRACE samples, i.e. senior unsecured and all bonds, exclude trades reported to occur be-
fore the bond is issued or after it matures, as well as trades reported as cancelled, attached to 
non-U.S. firms, denominated in non-US currency, or issued by financial firms (SIC codes 60-69). 
The latter are structured around leverage and would overly influence results. We modify prices 
or other terms to their corrected values when TRACE indicates a retroactive correction. Like 
BBW (2019), we also remove transactions with prices below 1/20 or above 10 times their face 
amount, bonds with remaining maturity of less than one year, and bonds in default at the time 
of trade initiation. 

Our samples are about 30 % larger than similarly filtered samples from the WRDS Monthly Cor-
porate Bond File. A WRDS return in month t + 1 requires a minimum of two trades for the bond 
— each in the last five days of months t and t + 16. Our return requirement is less restrictive, 
so every WRDS return observation (with identical filters) has a corresponding return in our sam-
ple, but the reverse is not true. Robustness tests analyse returns from Merrill Lynch month-end 
trader marks, with the same start month as TRACE, but ending December 2016, covering 140 
808 observations. 

We analyse month t + 1 profits from trading signals known by month t’s end. Imputed prices 
from month t + 1 transactions help estimate full-month t + 1 returns. Unlike prior studies, we 
require a minimum eight-day gap between the transaction date of the bond price used for the 
signal and the return month’s first day. The latter is the earliest transaction date we might use 
to impute month t + 1’s return. As discussed later, this lengthy separation, an enhancement of 
measures used in equity studies to avoid bid-ask bounce, prevents microstructure biases from 
contaminating our findings. Note that the signal is known and assumed to be implemented at 
month t’s end. It is merely the price inputs for the signal and estimated monthly return that 
require separate and distant transactions. 

 
5 TRACE averages 1 149 bonds per month in cross-sectional regressions, since few bonds exist throughout the full 
sample period and the regressions require non-missing values for all regressors. The latter requirement is uni-
formly imposed across all specifications to facilitate comparisons. The paper’s factor model regressions do not 
impose this constraint. 
6 There are several definitions of returns in the WRDS database, but this is the version used in the literature (e.g., 
Bai, Bali and Wen 2023). 
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2.1 Return construction 

Unlike equities, bonds trade infrequently and often at large bid-ask spreads. To address these 
issues, we apply the martingale property. This property says that an unbiased estimate of an 
asset’s price on some date is its transaction price at some other date, adjusted for risk premia, 
the time value of money, and any payouts between the dates. These adjustments are small and 
closely captured by a bond’s monthly interest earned when transaction dates are close to the 
month-end price estimation date. For our sample, price-estimating trades are typically about 
two to three days from the prior or current month’s end. 

TRACE reports bond transactions’ flat prices. Unless a bond is in default, a bond buyer pays the 
‘full price’, consisting of the flat price plus interest accrued. The full price change plus any cou-
pon paid per dollar invested is an unbiased estimate of the bond’s expected return. Thus, if 
earned interest per dollar invested (i.e. the current yield) — the month’s difference in accrued 
owed to sellers of the bond plus any paid coupon — completely captures the expected return, 
the flat price must be a martingale. While monthly changes in accrued interest plus distribu-
tions do not perfectly match the compensation for the time value of money and risk, they are 
close approximations, particularly for short periods. Portfolio diversification makes the approx-
imation more innocuous. Finally, any failing of the martingale hypothesis implies our results are 
conservative, as the paper’s introduction explained. These insights validate substitution of flat 
bond prices from transactions at nearby dates for the month-end flat prices that would be ob-
served if the data were available. Specifically, a bond’s month t + 1 return is its flat price change 
per dollar invested, as measured from month t + 1’s first and last transactions, plus the current 
yield from holding the bond over the entire month. Details are provided below. 

End-of-Month Flat Bond Prices. The martingale property implies that the imputed end-of-
month flat bond prices, PE, are the mid-market end-of-month flat prices at which the bonds 
would trade, plus noise. The noise depends on the bond price’s volatility between the trade 
date used for imputation and the end of the month, as well as the spread charged by the party 
providing liquidity. For bond j’s end-of-month t + 1 flat price, we use the flat price of the last 
month t + 1 trade in bond j. For example, to obtain the April 30, 2013 flat price, we might use 
the flat price of an April 26, 2013 trade. If there is no month t + 1 transaction for bond j, we 
treat the bond’s month t + 1 return as missing. 

Beginning-of-Month Flat Bond Prices. We estimate a bond’s beginning-of-month flat price, PB, 
as the flat price from its first trade that month. Thus, a March 2013 beginning-of-month price 
comes from a March 2013 trade. If there is only one transaction in a month, the flat price of 
that transaction serves both as its beginning and ending flat price, tying its return only to the 
month’s interest. 

Monthly Returns. Using the end-of-month and beginning-of-month flat bond price estimates 
described above, we construct each bond’s month t + 1 return as: 
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t + 1 are the beginning- and end-of-month t + 1 imputed flat prices, AIt is 
accrued interest owed at the end of month t, and Ct + 1 is the coupon (if any) awarded for holding 
the bond in month t + 1. We treat returns in two consecutive months as missing if their product 
is less than –0.04 as it likely reflects error in recording the common price used in consecutive 
returns. Cumulated six-month returns, a momentum control, is computed analogously to equa-
tion (1), using a single beginning and single ending price over the six-month horizon. As in equa-
tion (1), the six-month return is adjusted for beginning and ending accrued interest, as well as 
coupons paid during the interval. 

Due to Jensen’s inequality, noise in equation (1)’s denominator from beginning-price imputa-
tion upwardly biases its return estimates—analogous to the upward bias in equity returns 
(Blume and Stambaugh, 1983). However, our results focus on return spreads between BBM 
quintiles. If biased returns affect the BBM strategy’s long and short legs equally, their return 
spread eliminates the bias. If the short leg’s bias is greater (as implied by trading frequency 
evidence), our return and alpha spreads underestimate the true spreads. This differs from the 
conservative spreads generated by martingale violations. Recall, the latter spreads stem from 
the tendency of discount (high BBM) bonds’ flat prices to rise, making intra-month flat price 
changes understate full-month changes; likewise, premium (low BBM) bonds’ flat prices tend 
to fall, making intra-month changes overstate full-month changes. These two estimation im-
perfections thus imply wider BBM return and alpha spreads than we report. 

Bonds in Default. TRACE reports prices whenever bonds in default trade. We use these prices 
when assessing trading signal profitability. Our data also pinpoint the day each default occurs. 
To facilitate risk adjustment, we exclude bonds in default at the time a trading signal is imple-
mented (end of month t) but include bonds that commence default while our strategies are 
invested in them (month t + 1). The month t exclusion limits the fraction of defaulted bonds in 
our sample yet avoids all bias from sample selection because the only default filter is from a 
feasible trading strategy choice. 

Defaulted bonds trade ‘flat’, obviating the need for equation (1)’s accrued interest adjustments 
to convert flat prices into prices paid. Moreover, the coupons promised by defaulted bonds are 
never paid in month t + 1. Unlike the flat prices of bonds that trade with accrued interest due, 
the flat prices of defaulted bonds cannot be martingales—motivating adjustment of their be-
ginning- and end-of-month t + 1 price estimates. The adjustment we apply deliberately under-
estimates defaulted bonds’ returns7. This makes our return spread estimates conservative be-

 
7 Specifically, if the imputed beginning-of-month price is quoted flat due to default, equation (1) substitutes the 
flat price of the first transaction preceding the transaction used for the signal (hence, pre-default) as PB, uses the 
end-of-month (hence, post-default) price for PE, and omits accrued interest and coupons in the numerator, but 
not the denominator. 
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cause we understate the returns of long positions in defaulted bonds and there are no de-
faulted bonds in our strategies’ short positions. This conservatism is ‘overkill’. Bonds commenc-
ing default in month t + 1 are rare, even for the strategies’ long positions. Defaulted bonds 
represent only 0.04 % of BBM’s long position investment. 

Original Issue Discount Bonds. The flat prices of original issue discount bonds tend to appreciate 
and thus cannot be martingales. However, sizable discounts are rare: 99.8 % of issue prices are 
above USD 90, fewer than 0.1 % are below USD 50, and the average issue prices of the five BBM 
quintile portfolios are all close to USD 99.5. Moreover, the numbers of days of amortisation are 
generally small, and the distribution of such bonds across BBM quintiles is relatively symmetric. 
For these reasons, adjusting the martingale price estimate for original issue discount bonds 
would increase the returns of BBM quintile portfolios by only negligible amounts. Eschewing 
the adjustment, as we do, has no detectable effect on the return difference between any pair 
of quintile portfolios. 

2.2 Signal construction 

Price measurement error shared by the month-end signal and subsequent return generates 
correlation between the two. Constructing end-of-month t signals from transaction prices at 
least eight calendar days before the first day of month t + 1 avoids this pitfall. The multi-day 
gap addresses trade splitting and workouts. Consider a USD 120 million customer bond sale to 
one or more dealers, executed as three USD 40 million sales on three consecutive days: 29 and 
30 April and 1 May. Such trades yield three daily price estimates at bid prices, assuming the 
bond lacks other trades. Bid prices artificially inflate any BBM signal employing them, as well as 
May’s return if 30 April’s (e.g. WRDS computation of the bond’s return) or 1 May’s transaction 
provides the return’s beginning price. Trade splitting at the ask or favourable pricing by dealers 
to trades straddling a month’s end induce similar correlation. Scenarios that artificially induce 
correlation between BBM signals and subsequent returns become less likely the larger the gap 
between the prices used for signals and returns. Our eight-day gap ensures that correlations 
between estimated BBM and estimated returns stem from signals that truly predict returns 
rather than any microstructure bias. 

Bond Book-to-Market Signal. Book value per USD 100 face amount is a bond’s amortised issue 
price. Table 1, Panel A reports issue price distributions, sourced from Mergent (Fixed Income 
Securities Database, FISD). For most bonds, the FISD issue price is near USD 100. (With USD 100 
assumed as the book value of all bonds, BBM’s ability to predict returns is highly significant, but 
slightly reduced.) If the bond is issued at a discount or premium, we apply the accounting rule 
that linearly amortises the premium or discount to maturity on month-end dates to arrive at 
the bond’s (end-of) month t book value. For the 30 % of cases where FISD lacks the issue price, 
we omit the bond as a potential trade. 

Month t’s BBM signal is Book/PS. The signal’s flat price per USD 100 of face amount, PS, is taken 
from the bond’s most recent transaction (excluding month t’s last seven days). Even when sig-
nal prices are from stale trades, the information represents what is available at the end of 
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month t, thus directing trades at that instant in time. It is also conservative, since signals based 
on stale prices are likely to be less effective. Table 1, Panel B reports the distribution of time 
between the dates of the transaction used for PS in the BBM signal and the transaction used 
for beginning price PB in month t + 1’s bond return estimate. For the senior unsecured bonds 
that researchers traditionally study (‘traditional bonds’) and that we focus on in all but Table 8, 
the median gap between the signal date and that latter price is 11 days; the average is 16 days 
(Panel B’s first row). About 10 % of the gaps exceed 25 days. 

Figure 1 shows consecutive transactions in a bond as dots. It depicts the prices used for signal 
and return construction. PS is the transaction price used for month t’s signal. PB and PE are intra-
month flat transaction prices used as beginning and ending flat prices for month t + 1’s return. 
The pair serves as the imputed flat prices at their nearest hashmarks, which separate months. 
Figure 1 shows PS as originating in month t, but it could come from a prior month if the bond 
lacks a month t transaction. 

2.3 Alpha tests for signal efficacy and control variables 

We sort bonds into quintiles at month t’s end. Quintile 5 has the most value oriented (highest 
BBM) bonds. We primarily analyse month t + 1’s bond returns within these quintile portfolios, 
employing FM cross-sectional regressions as well as structural and factor models. 

FM Regression Coefficients on BBM. Here, the monthly regression’s unit of analysis is the bond. 
We cross-sectionally regress month t + 1’s bond returns (computed with Section I.A’s proce-
dures) on BBM quintile dummies or normal scores and quintile dummies for numerous con-
trols. The coefficients on each regressor are then averaged across months. The controls consist 
of bond attributes and issuing firms’ equity characteristics measured (in contrast to the signal’s 
eight-day gap) as close to the end of month t as possible. These controls include each bond’s 
yield-to-maturity (‘YTM’)8, credit spread, credit rating, value outstanding, time to maturity, du-
ration, age, past seven-month return excluding the prior month (‘bond momentum’), past one-
month return (‘bond reversal’), bid-ask spread, and nearness to default. Equity characteristics 
include equity market beta, equity market capitalisation, equity book-to-market, past one-
month stock return (‘short-term reversal’), past five-year stock return excluding the prior year 
(‘long-term reversal’), past 12-month stock return excluding the prior month (‘momentum’), 
accruals, earnings surprise (‘SUE’), gross profitability, and earnings yield. These controls, de-
tailed in Internet Appendix A, are rooted in past literature and textbooks9. Many controls are 

 
8 BBM tends to rise and fall with YTM. Neither BBM nor YTM directly map into an expected return. However, YTM, 
deployed as a function of dummy variables for YTM ranks, better captures expected returns than the cruder BBM. 
9 Robustness tests explore parametric controls. In addition to papers cited earlier, Grinblatt and Titman (2002, Chs. 
2, 23) discuss yield-to-maturity, maturity, duration, and credit rating, Nozawa (2017) studies credit spread, Blume 
and Stambaugh (1983) study bid-ask spread, Jostova et al. (2013) focus on past returns, Warga (1992) relates bond 
age to returns, and Schaefer and Strebulaev (2008) analyse nearness to default. Bartram and Grinblatt’s (2018, 
2021) equity controls are the same as ours. Other research on equity controls is cited in the introduction’s discus-
sion of equity market efficiency. 
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highly correlated, complicating inferences from their coefficients. Most FM regressions also in-
clude market microstructure/liquidity controls measured in the return month, t + 1, as well as 
industry dummies. 

We employ four main specifications of nonparametric regression controls. The first has industry 
controls; the second adds market microstructure controls; the third adds controls for bond 
characteristics; the fourth adds equity characteristics of the bond issuer. The many controls in 
category-oriented FM regressions represent a high dimensional matrix classification of each 
bond, akin to matrix pricing commonly used by Wall Street to mark YTMs and prices of thinly 
traded bonds. Here, they represent attributes that likely predict bond returns. A robustness 
check with a necessarily shortened sample period and smaller cross-section includes the bond’s 
past three-year return, skipping a year. 

Because Equation (1)’s dependent variable Rj is bond j’s true (but unobservable) full month 
return rj less noise, ej, regressing the imputed return Rj on an observable attribute Xj 

rj – ej = c0 + c1 Xj + uj 

has a plim for c1 equal to the slope coefficient that the unobserved true return would have, 
since 

cov(rj – ej, Xj)/var(Xj) = cov(rj, Xj)/var(Xj). 

This stylised example illustrates that the c1 estimate from intra-month flat prices is a consistent 
estimate of the unobservable true full month return’s c1. If Xj is a categorical dummy, c1 is the 
return difference of two equal-weighted portfolios. Its noise component is diversified away in 
FM time series averaging. 

Structural Models. Structural models view corporate bonds and equity as contingent claims on 
the firm’s assets. One typically uses structural models to calculate bond prices, yields, or credit 
spreads, but past research has shown that they explain these poorly10. Such models also have 
implications for returns, showing that, over very short time periods, corporate bond returns 
should be close to perfectly correlated with a portfolio of riskless bonds and same-firm equity. 
Hedging out the equity component on the left-hand side of the FM regression adjusts for most 
of the risk premium linked to credit risk. To identify hedge ratios, we run a panel regression of 
bond returns on their own-equity returns interacted with the control dummies used for the FM 
regression. This generates equity hedge ratios for each bond-month observation from the 
panel’s coefficients and monthly bond attributes. 

Factor Model Intercepts. Regressing the time series of excess returns (above one-month LIBOR) 
of BBM quintile portfolios on factor portfolio returns is an alternative to FM regressions for risk 

 
10 Eom et al. (2004) fit the credit spreads of 182 bonds to structural models, finding poor matches with observed 
credit spreads. Huang and Huang (2012) conclude these models are deficient at pricing bonds, even at the ratings 
level. Huang et al. (2020) document failures to fit CDS data. Collin-Dufresne et al. (2001)’s bond-level regressions 
of credit spreads on stock returns and other control variables show structural models’ poor fits. 
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adjustment. Regression intercepts or spreads between intercepts represent alpha and should 
be zero in an informationally efficient bond market. We begin with BBW’s (2019) five factors: 
the bond market, credit, value-at-risk, liquidity, and reversal factors. Factor construction in our 
paper, using bond data from TRACE, follows BBW’s (2019) procedures11. Data from Merrill 
Lynch is required for value-at-risk in the sample’s first three years when the factor requires data 
that precedes TRACE’s initiation. In addition, we use an augmented BBW six-factor model that 
adds a term structure factor to BBW’s five factors, two versions of a one-factor CAPM model 
with a bond index as a factor, two versions of a two-factor model, which adds equity HML to 
the CAPM factor, and a customised 21-factor model. 

2.4 Summary statistics for the overall sample 

Table 2, Panel A lists summary statistics for BBM and other attributes of the senior unsecured 
bonds and their issuing firms. Each row shows time series averages of the cross-sectional means 
of each variable using all of these traditional bonds (Column 1) and all traditional bonds within 
each BBM quintile (Columns 3–7). Q1 represents the 20 % of bonds each month with the small-
est BBM, averaging a BBM of 0.85; Q5 represents the highest BBM quintile, averaging a BBM 
of 1.09. Column 2 also reports the time series average of the cross-sectional correlations of the 
characteristic with BBM. 

High BBM bonds tend to have poorer credit ratings (AAA=1, …, D=22, with 10 or less indicating 
investment grade) and are closer to default12. Not surprisingly, such bonds have higher bond 
betas, volatility, and value-at-risk (a downside risk measure). They also have higher YTMs, lower 
market value, higher bid-ask spreads, greater trading volume, larger numbers of trades, and 
been issued more recently and by firms with more bonds, higher equity betas, poorer past year 
equity returns, larger equity book-to-market, and lower earnings/stock price ratios. By contrast, 
the lowest quintile of BBM bonds have the highest returns over the past six months (bond mo-
mentum), and the least negative serial covariance (bond gamma)13, and come from larger firms 

 
11 We first calculate each bond’s daily price as its volume-weighted average daily price, for all bonds in TRACE and 
Mergent FISD meeting BBW’s (2019) filters. When TRACE shows trades in the last five business days of months t 
and t + 1, we compute the bond’s return from consecutive month-end daily prices (adjusting for accrued interest 
and coupons paid). If month t lacks a qualifying month-end daily price, we compute month t + 1’s return using the 
earliest daily price in the first five business days of month t + 1. If neither approach is possible due to lack of 
qualifying prices, we treat month t + 1’s return as missing. Factors face-value weight these returns for specific 
subsets of bonds, as in BBW. 
12 Default risk is quite low. Even the highest BBM quintile averages an investment grade (IG) rating. IG bond types 
show a similar-sized BBM anomaly. We also control for nearness to default (the negative of the distance to default 
in Schaefer and Strebulaev, 2008), computed as the z-value corresponding to the default probability from an ad-
aptation of the Black-Scholes model. Nearness to and distance from default thus generate identical default prob-
ability quintiles. The firm is in default when nearness to default is positive infinity; default probability is below one-
half with negative nearness to default. 
13 Bond gamma, based on Roll (1984), was used in BBW and Bao et al. (2011) to represent temporary price move-
ments and hence illiquidity. Table 2 shows that gamma shares a similar correlation with BBM as our direct measure 
of a bond’s effective bid-ask spread. Using gamma as a control in place of our direct measure of bid-ask spreads 
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with the highest stock returns over the past year (equity momentum)14. Bond maturity and 
duration, while concentrated in the two extreme BBM quintiles, are greatest within the 20 % 
lowest BBM bonds. Combined with the fact that lower credit risk tends to extend the effective 
maturity of actual bond payments, and holding coupon rate the same (which has opposing du-
ration and tax effects on expected returns), shifts in the risk-free term structure impose great-
est risk on the 20 % lowest BBM bonds. 

The flat prices of BBM Q5 bonds, which typically trade at discounts, tend to appreciate, while 
Q1 bonds depreciate. Thus, Q5 bond purchasers tend to earn capital gains, while Q1 purchasers 
earn capital losses, even if both bond types earn identical returns. (The other return compo-
nent, current yield, likely offsets expected shrinkage of flat price discounts and premiums.) 
When realised, the gains and losses will generally be taxed at lower rates and in the more dis-
tant future than accrued interest or amortisation. Thus, tax considerations argue for negative 
Q5–Q1 risk-adjusted return spreads. We now analyse raw return spreads before turning to ad-
justments for risk or illiquidity. 

Table 2, Panel B reports the average month t + 1 returns of five BBM-sorted portfolios in the 
columns labelled Q1–Q5. The panel’s first two rows correspond to equal- (EW) and value- (VW) 
weighted quintile portfolio returns, respectively. Both rows exhibit nearly monotonic increases 
across BBM quintiles. For example, the lowest BBM EW quintile portfolio earns 57 bp per 
month, while the highest earns 101 bp per month. Panel B also shows the average monthly 
return for the full sample (66 bp EW and 57 bp VW, a more than 1 % annualised difference), 
the average monthly cross-sectional correlation between returns and BBM (0.04), the average 
monthly spread between the returns of the largest and smallest BBM quintiles (44 bp EW and 
41 bp VW, both significant), as well as the fraction of months with a positive Q5–Q1 return 
spread (63 % EW and 59 % VW, both significant). The spread’s t-statistics correspond to annu-
alized Sharpe ratios of 0.92 (EW) and 0.85 (VW). Both exceed the 0.40 Sharpe ratio for equity 
HML (over a longer sample period) reported by Ehsani and Linnainmaa (2022). Table 2, Panel 
B’s last two rows stratify the top row (EW) by bond size. Small bonds have larger returns within 
each quintile and a larger BBM effect than large bonds. (The two sequentially sorted rows do 
not average to the top row because some bonds lack face value outstanding data.) The small 
bond BBM effect comes from Q5, for which the small minus large bond return is 27 bp per 
month — nearly twice the small minus large spread for Q1 and the largest size spread for any 
quintile. 

Table 2, Panel B’s return spreads are not temporary price changes that subsequently reverse. 
Percentage changes in flat prices from the return’s ending price to the next price (from month 

 

has little effect on our findings, as Appendix B notes. However, its interaction effects with BBM are stronger, as 
the paper later documents. 
14 Nozawa (2017) and Chordia et al. (2017) show corporate bond issuers are mostly large firms (above the NYSE 
median size). 
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t + 2’s first trade or later) are –0.001 for EW Q5 and –0.090 for EW Q1 (table-omitted for brev-
ity.) Thus, returns formed from the prices of month t + 1 and t + 2’s initial transactions, rather 
than from month t + 1’s first and last trades, would increase BBM’s reported extreme quintile 
spread by about 8 bp. 

Panel B omits bonds lacking a month t + 1 trade and assigns zero flat price change to bonds 
trading just once in month t + 1. Such choices inflate Panel B’s spreads, albeit negligibly, if the 
unobserved full-month spreads of no-trade bonds are small or spreads in one-trade bonds’ flat 
price changes are negative. The opposite is true. Table 2, Panel C reports each quintile’s 
monthly return, measured from the trade just prior to the signal price’s trade date to the first 
trade after month t + 1. To address martingale violations, the returns shrink inter-month flat 
price changes by the number of months, (a fraction exceeding one), between the beginning 
and ending transactions generating each price pair, while each return’s current yield compo-
nent is over the full month t + 1. Panel C shows a larger return spread for no-trade bonds than 
the full sample’s spread and a positive spread in flat price change for one-trade bonds — the 
latter reflected by the difference in Panel C’s two bottom rows. 

Table 2, Panel D reports each BBM quintile’s joint distribution of beginning and ending price 
bid-ask pairs for month t + 1’s returns. It lists the fraction of returns that come from the nine 
pairings of bids (customer sale to a dealer), asks (customer buy from a dealer), and mids (dealer-
to-dealer transaction) attached to beginning and ending prices. A bid beginning price tends to 
have a higher return, while a bid ending price tends to have a lower return, with the reverse 
for asks. Applying the bid-ask spread from each quintile (Panel A) to the joint distribution in 
Panel D implies that both Q1’s and Q5’s returns are upwardly biased, by 1 bp and 3 bp, respec-
tively. Their difference, 2 bp, is negligible. Hence, Table 2, Panel B’s returns are not driven by 
their reliance on bid and ask prices for inputs. 

3. Bond book-to-market and the cross-section of expected bond returns 

Many return-influencing attributes correlate with BBM. We therefore analyse BBM’s marginal 
effect, controlling for these attributes. Both cross-sectional FM regressions and time series fac-
tor model regressions show that BBM does not proxy for return-predicting attributes or factor 
betas. 

3.1 Fama-MacBeth cross-sectional tregressions 

The FM approach regresses the cross-section of next month’s bond returns (in percentage 
points) on their BBM signal and other bond and equity characteristics known at the time of 
trade initiation: 

, 1 , , , , , 1
1

S

j t t t j t s t j s t j t
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= + + +∑ . (2) 

In equation (2), BBMj,t is the month t BBM signal for bond j, and Xj,s,t is the end-of-month t value 
of characteristic s of bond j (or its issuer) including industry fixed effects. The FM procedure 
averages the monthly coefficients over time and tests whether the average significantly differs 
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from zero. 

 

FM Specification. Table 3 Panel A’s four odd-numbered specifications regress bond returns on 
BBM and controls, each expressed as dummy variables corresponding to Q2 through Q5, with 
Q1 omitted for the intercept. For brevity, Table 3, Panel A only reports the coefficients for the 
Q5 dummy variables, which is Q5–Q1’s return spread holding other regressors fixed. Specifica-
tions 2, 4, 6, and 8, which study a parametric version of the signal, replace the BBM quintile 
dummies with the BBM normal score, which is the BBM ratio transformed into a standardized 
normally distributed regressor. 

Specifications 1 and 2 regress bond returns on BBM and industry dummies. Specifications 3 and 
4 add (non-categorical) market microstructure/liquidity controls to Specifications 1 and 2 that 
roughly proxy for the precision with which the martingale approach estimates month t + 1 re-
turns. They include the number of bonds from the issuing firm in month t + 1, the percentage 
of the market value of the issuing firm’s bonds with month t signals that trade in month t + 1, 
and a pair of controls for the (absolute value of the) number of calendar days between the first 
(last) day of the month and the transaction date used for beginning-of- (end-of-) month t + 1 
prices. Specifications 5 and 6 add bond attribute controls to Specifications 3 and 4. Finally, 
‘kitchen sink’ Specifications 7 and 8 add equity and firm characteristics to Specifications 5 and 6. 

Specification 1 shows that BBM Q5 bonds outperform Q1 bonds by 44 bp per month (t = 3.62), 
controlling for industry fixed effects. The 0.14 coefficient on the parametric BBM signal is also 
significant (t = 3.13) as Specification 2 shows. Specifications 3 and 4 illustrate that microstruc-
ture controls barely affect results: BBM’s average coefficient is similar, whether comparing 
Specification 3 with 1, or 4 with 2. Omitted for brevity, the relatively small effect of market 
microstructure also applies to the remaining two specifications. Thus, identifying returns with 
the martingale procedure does not distort inferences. Adding bond-specific controls (Specifica-
tions 5 and 6) reduces BBM’s influence on a bond’s month t + 1 return by about 40 %, but the 
BBM effect remains highly significant. Specification 7 and 8’s controls related to equity returns 
increase BBM Q5’s coefficients compared to Specifications 5 and 6 by about 20 % and increase 
significance as well. Moreover, Specifications 7 and 8 establish that equity book-to-market does 
not predict bond returns once BBM is controlled for. 

Outliers. Results are also not driven by outliers. Eliminating observations that rely on the top 
100 or bottom 100 bond prices negligibly alters our findings. 

Callable Bonds. BBM Q5 does not outperform Q1 because bonds tend to be called when their 
fair value (in the absence of a call) exceeds the call price. Filtering out bond returns in months 
approaching call dates or adding controls for call dates has little effect on BBM’s alpha spread. 

Parametric Controls. Our use of quintile dummy control variables in Table 3, Panel A to better 
proxy for a nonlinear relationship does not explain our findings. Table 3, Panel B’s Column 1 
parrots Panel A, Specification 7’s use of all FM controls but shows similar results with paramet-
ric versions of the control variables. This leftmost column reports a BBM quintile spread of 29 
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bp (t = 4.52). 

 

Prices from month-end trader marks. The martingale assumption is also innocuous. End-of-
month trader marks in the Merrill Lynch database instead of bond returns from transactions 
offer alternative returns for a smaller set of more liquid bonds. With Merrill data, BBM’s (unre-
ported) Q5–Q1 raw return spread is 44 bp (t = 2.65) for equally weighted portfolios and 44 bp 
(t = 2.85) when value weighted. The associated alpha spread (Panel B, Column 2) is 20 bp per 
month (t = 2.52). Using Merrill’s marks for the prices of the BBM signal as well (Column 3) gen-
erates a larger, more significant alpha spread of 50 bp per month (t = 5.03) but has bias from 
error in the price mark shared by both BBM and the return’s beginning price. 

Structural Models. Table 3, Panel B also rebuts arguments that Table 3, Panel A’s significant 
alpha spreads stem from failure to properly control for the structural model implication that 
distressed bonds resemble equity. Earlier, we noted that BBM Q5 bonds are not distressed 
because they exhibit negligible default rates, while Q1 bonds experienced no defaults. We also 
noted the extensive controls for credit spreads, bond rating, and default in Table 3’s FM regres-
sions. Punctuating our claim is Column 4 in Table 3, Panel B, which reruns Panel A’s Specification 
7 (all controls) with equity-hedged bond returns as the dependent variable. Bond j’s month t + 
1 hedged return subtracts the product of its end-of-month t hedge ratio (described earlier) and 
the issuing firm’s month t + 1 equity return in excess of LIBOR from the bond’s month t +1 
return. The hedge eliminates the bond’s asset risk premium component. Column 4’s results 
here resemble Table 3 Panel A. BBM Q5’s same-firm equity-hedged bond returns outperform 
Q1’s by 32 bp per month (t = 4.82). The similar equity hedged and unhedged BBM quintile 
coefficients indicate that structural models are unlikely to play a successful role as supplements 
or replacements for Table 3’s categorical regressors. Finally, if BBM Q5 merely proxied for poor 
default controls, BBM should predict the firm’s equity return. However, Table 3, Panel B (Col-
umn 5) shows that when the firm’s equity return is the dependent variable, the BBM Q5 coef-
ficient is –0.082 and insignificant (t = –0.71). In sum, BBM predicts bond returns and equity-
hedged bond returns, but not same-firm equity returns. Later study of interaction effects sup-
ports this finding. Moreover, the equity premium associated with default reflects outcomes 
where equity is nearly wiped out. In unreported results, using a dummy for whether the equity 
return is below –75 % as the dependent variable yields a BBM Q5 coefficient of 0.079 (t = 1.50). 

Investment Grade Bonds. Table 3, Panel B’s rightmost column studies the exclusively invest-
ment-grade (IG) subsample of traditional bonds. After sorting IG bonds into BBM quintiles, the 
rightmost column reports Specification 7 of Table 3, Panel A. The IG subsample’s BBM Q5 co-
efficient, 0.307 (t = 5.97), is similar to Table 3 Panel A’s coefficient, but more significant. With 
BBM dummies from an independent sort of IG and BBM, the (unreported) BBM Q5 coefficient 
is 0.321 (t = 5.01). 

Long-Term Bond Return Reversals. Daniel and Titman (2006) and Gerakos and Linnainmaa 
(2017) link book-to-market’s equity return predictability to the ratio’s correlation with long-
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term past returns and, accordingly, changes in firm size. Bali et al. (2019) show that a bond’s 
three-year past return, measured from months t – 48 to t – 13, predicts return reversal. We 
omitted this past return control because its lengthy horizon halves the average number of 
bonds each month and cuts 42 months from the sample. Yet, in horse races between the three-
year past return and BBM, using Table 3 Panel A’s key specifications (plus the thre-year past 
return), the three-year past return’s coefficient is never significant and always economically 
small. For example, in specifications analogous to Table 3, Panel A’s Specifications 5 and 7, BBM 
Q5’s coefficients are 0.250 (t = 2.55) and 0.303 (t = 3.29), while the three-year past return Q5 
coefficients are 0.006 (t = 0.08) and –0.016 (t = –0.20), respectively. Thus, as a corporate bond 
return predictor, BBM subsumes the prediction power of the three-year past return. 

Further robustness tests. Additional robustness tests for Table 3 are discussed in Internet Ap-
pendix B. It shows that adding controls for bond (one-factor) beta, volatility, and value-at-risk 
have little impact on our findings (Internet Appendix Table IA.1). Similarly, replacing Table 3’s 
bid-ask spread control with gamma illiquidity still leaves a significant BBM anomaly, but one 
that (with a comparable sample) is virtually identical in magnitude and significance to Table 3 
(Internet Appendix Table IA.2). Finally, it shows that the BBM signal is distinct and separate in 
its effects from a mispricing signal developed by Bartram and Grinblatt (2018, 2021) (Internet 
Appendix Table IA.3). 

3.2 Factor model time series regressions 

As an alternative to FM regressions, Table 4 reports factor model alphas and factor betas of EW 
and VW quintile portfolios sorted on the BBM signal using several factor models. Compared to 
Table 3, Panel A’s FM cross-sectional analysis, Table 4’s time series factor model regressions 
include bond observations that lack data on the control characteristics. They also facilitate al-
pha analysis of each of the BBM quintile portfolios and the use of both equal and value 
weighting. 

For BBM quintile portfolio q, Table 4 Panels A and B run time series regressions of the quintile 
portfolio’s returns (in excess of one-month U.S. Dollar LIBOR) on five or six risk factors, 
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The intercept aq is the risk-adjusted return or ‘alpha’ of the quintile portfolio. All factor model 
regressions report test statistics derived from Newey and West (1987) standard errors. If sys-
tematic risk factors explain differences in bond returns for portfolios stratified by BBM, the risk-
adjusted returns αq of the BBM quintile portfolio should be indistinguishable from zero. Table 
4, Panels A and B report the alphas and factor betas, as well as the spread in the Q5–Q1 risk-
adjusted returns. 

BBW Factors. The BBW five-factor model controls for overall bond market, credit, value-at-risk, 
liquidity, and short-term bond return reversal factors; the augmented BBW six-factor model 
adds a term structure factor. The first row of each of Panel A’s top half (EW portfolios) and 
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bottom half (VW portfolios) shows each quintile’s BBW risk-adjusted returns. Table 4, Panel A’s 
EW 19 bp alpha spread is smaller than the alpha spread (BBM Q5 coefficient) from any of Table 
3, Panel A’s odd-numbered (non-parametric) specifications. The VW spread, 12 bp per month, 
is smaller than the EW spread and statistically insignificant. The small EW and VW alpha spreads 
in Table 4, Panel A may stem from the five-factors’ lack of a term structure control; bonds with 
similar maturity tend to covary more with each other than with different maturity bonds. To 
control for term structure risk, Table 4, Panel B supplements BBW’s factors with a term struc-
ture factor created in the spirit of BBW. We independently triple sort bonds into 125 face-value-
weighted portfolios based on maturity, coupon and credit rating. We then take the simple av-
erage of returns across the 25 portfolios of the top 20 % of bonds in terms of maturity for the 
long position, then do the same for the bottom 20 % for the short position. The difference in 
returns between these two extreme maturity quintiles is our term structure factor. Table 4 
Panel B’s augmented BBW factor model shows that adding this term structure factor increases 
the EW alpha spread to 23 bp and the VW spread to 18 bp, both statistically significant. The 
latter spreads are closer to the pair of comparison spreads obtained from Table 3 Panel A’s FM 
regressions. 

Return biases due to bid and ask distributions, as well as Jensen’s inequality, prevent assess-
ment of whether Table 4’s observed spreads stem more by the long or the short end. However, 
if the bias was the same across all quintile portfolios and the true alphas of the five EW quintile 
portfolios averaged to zero, the respective EW alphas in Panels A and B would be 22 bp and 19 
bp lower than reported. Reducing each alpha in Panel A by the 22 bp would generate Q1 and 
Q5 intercepts of –0.02 and 0.18, respectively. Panel B’s alpha reduction of 19 bp implies Q1 and 
Q5 intercepts of –0.06 and 0.17, respectively. Based on these transformations, alpha spreads 
largely come from the long end (Q5). 

Bond Size. BBM’s effects may also differ across risk adjustment methodologies because Table 4 
lacks factors for many other controls in Table 3, Panel A’s FM regression, like bond size. Table 
4, Panel C’s top four rows illustrate the effect of bond size on factor model EW alpha with the 
BBW five-factor and augmented six-factor models15. With both models, bonds with less than 
intra-quintile median market capitalisation have larger and more significant alpha spreads than 
bonds with larger value outstanding. With the five-factor model, EW portfolios of ‘large bonds’ 
exhibit no significant alpha spread. With the augmented six-factor model (third and fourth 
rows), the small-bond alpha spread is a significant 28 bp, and lies between the 27 and 32 bp 
alpha spreads from Specifications 5 and 7 in Table 3, Panel A. However, the 20 bp large-bond 
spread, while significant, is far smaller. If mispricing accounts for BBM alpha spreads, this find-
ing, along with the VW finding for the BBW five-factor model, suggests that large bonds may 
be more efficiently priced than small bonds. BBM’s greater efficacy at predicting small-bond 
risk-adjusted returns mirrors equity’s parallel finding. 

 
15 The small and large rows do not average to Table 4 Panel A’s EW alphas because some bonds lack data on their 
size. 
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Alternative Factor Models. As an alternative to the BBW factor models, Panel C also reports 
alphas and alpha spreads from two versions of one-factor (‘CAPM’) and two-factor (‘CAPM + 
HML’) models. The one-factor models’ spreads are intercepts from regressing returns on a 
value weighted index of either the WRDS returns of all WRDS bonds or of the martingale-based 
intra-month returns of all bonds used in our sample of traditional bonds; two-factor models 
add equity HML as the second factor. The alternative factor models show significant and similar 
alpha spreads (about 30 bp per month). 

Robustness. Further robustness tests of the raw returns and factor model alpha spreads are 
found in Internet Appendix B. These tests find that there are significant alpha spreads with a 
21-factor model described in Appendix B (Table IA.4), that BBM’s CAPM alphas are larger for 
investment grade bonds (Table IA.5), and that neither volatility, individual bond market betas, 
value at risk, nor bond institutional ownership materially influence BBM spread magnitude (Ta-
ble IA.6). 

4. Understanding the BBM alpha spread: risk or mispricing? 

4.1 Signal delay 

Figure 2 plots alpha spreads (BBM’s Q5 dummy coefficients from Specification 7, Table 3, Panel 
A) for signal delays ranging from 0 to 11 months. Unlike Table 3, Figure 2’s returns always com-
mence in January 2004 irrespective of signal lag, ensuring apples-to-apples comparisons across 
differing lags. Its 30 bp per month alpha spread with no delay, i.e. first signal from December 
2003, approximates the 32 bp coefficient from Table 3, Panel A despite a shorter return series. 
Figure 2 indicates an alpha spread decline to 9 bp when signal delay is two months, losing about 
70 % of its efficacy. The spread meanders with further delay, ranging from 2 to 12 bp with a 
slow downward trend. 

Figure 2’s rapid decay rules out omitted risk or liquidity controls as the source of the BBM 
anomaly. Bonds with extreme BBM ratios may ultimately exhibit less extreme BBM. However, 
BBM is an attribute that evolves slowly, and generally, large price changes are required to move 
a bond out of an extreme BBM quintile. Most extreme quintile bonds remain in their quintiles 
for several months and, for some, even years16. BBM’s slow evolution implies that if BBM 
broadly proxies for omitted attributes, stale BBM signals should predict bond returns, which is 
inconsistent with Figure 2. 

 
16 BBM changes slowly with wide cross-sectional variation, just as Gerakos and Linnainmaa (2017) document for 
equity book-to-market. To prove that these features make BBM’s quintiles stable, we computed survival rates: the 
percentage of each BBM quintile’s month t investment remaining in the quintile’s month t bonds at the end of 
months t + 1, t + 2, and t + 3. With one-monthly delay, the time series averages of the percentages of ‘old bond’ 
investment are 89 %, 73 %, 67 %, 67 %, and 82 % for Q1, Q2, Q3, Q4, and Q5, respectively. Thus, the one-month 
survival rates for bonds in the two extreme BBM quintiles exceed those of the three interiors quintiles. For Q1 and 
Q5, the two-month survival rates are 85 % and 76 %, respectively: only an additional 4 % and 6 % of bonds leave 
Q1 and Q5 in the subsequent month, respectively. 
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Calibration of delay’s effect on quintile membership supports our view that BBM cannot be a 
broad proxy for risk or liquidity. More than 85 % of the extreme quintiles’ bonds persist in those 
quintiles in the next month, yet signal efficacy diminishes by 42 %. With a two-month lag, alpha 
declines by 70 %, but more than 80 % of this stale strategy is dedicated to bonds that remained 
in quintiles 1 and 5. Moreover, as time evolves, bonds leaving extreme quintiles generally move 
to adjacent quintiles. Adjacent quintiles have tighter alpha spreads with their more extreme 
neighbours than the two extreme BM quintiles have with each other. Indeed, the unreported 
coefficients on BBM quintiles 2–5 are monotonically increasing and significant in all of Table 3, 
Panel A’s odd-numbered specifications. 

The alpha decay pattern and extreme-quintile spread size also rule out BBM as a narrow proxy 
for the omitted risk/liquidity attributes of a small proportion of these quintiles’ bonds. As a 
narrow proxy, the omitted risk or liquidity attributes must earn implausibly large premia to ac-
count for the extreme quintiles’ observed alpha spread, and then have the premia shrink once 
the bonds exit their BBM quintile. With alpha spreads about twice the spread in YTM, the hid-
den risk or liquidity attributes would have to earn at least 20 times the Q5–Q1 spread in prom-
ised yields if BBM proxied for the omitted controls of 20 % of the BBM Q5 bonds. An omitted 
attribute earns just one-sixth of the needed spread if it earns a 5 % per year spread for this 
narrow set of bonds. Five percent is what the typical traditional bond earned over Treasury bills 
during our sample period without controls, while the narrow proxy hypothesis says BBM cap-
tures many times this premium as a spread missed by our controls. Default’s rarity and a simi-
lar-sized BBM anomaly for our investment grade subsample turn this hypothetical, enormous, 
yet rapidly declining risk/liquidity premium into pure fantasy. 

Unlike risk or liquidity premia, mispricing can both be distributed unevenly and be large for a 
small fraction of bonds within BBM’s extreme quintiles. Consistency with Figure 2’s rapid decay 
pattern requires only price convergence to fair value within a couple of months for such highly 
mispriced bonds. Finance teaches that savvy traders should take advantage of large arbitrage 
opportunities quickly. The fact that illiquid markets with large trading costs prevent instant 
price convergence to fair value of small pricing mistakes is no surprise. It takes time for the 
mispricing of some extreme quintile bonds to build to sufficiently attractive levels to warrant 
the attention of capital-constrained arbitrageurs. 

In sum, a few highly mispriced bonds within BBM’s extreme quintiles explain Table 3, Panel A’s 
results even when the remaining bonds are priced at fair value. When savvy market participants 
force the prices of highly mispriced bonds to converge to fair value, the formerly mispriced 
bonds tend to depart their quintiles. Whether they depart or stay, other bonds remaining in 
the extreme BBM quintile will largely consist of bonds that are close to fair valuations, rendering 
a delayed BBM signal useless. As a back of the envelope calculation, if only 10 % of the BBM Q5 
bonds are underpriced by 3 %, and 10 % of the Q1 bonds are overpriced by 3 %, 50 % of these 
mispriced bonds converging to fair value each month is sufficient to generate a 30 bp alpha (= 
3 % × 10 % / 2 + 3 % × 10 % / 2) spread with no delay, a 15 bp alpha spread with one-month 
delay (= 3 % × 10 % / 4 + 3 % × 10 % / 4), and a 7.5 bp alpha spread with two-months’ delay ( = 
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3 % × 10 % / 8 + 3 % × 10 % / 8). 

4.2 Signal efficacy as a function of default risk and liquidity 

Table 3, Panel A’s extensive controls for credit ratings, default, and liquidity make it unlikely 
that omitted controls explain the BBM anomaly. Prior YTM discussion, expanded on here, rein-
forces our credit risk argument. A default prone Q5 bond’s YTM should exceed its expected 
return because payments in default fail to meet the bond contract’s promises. The Q5 differ-
ence implies that the YTM difference between Q5 and no-default Q1 — less than 13 bp in Table 
2, Panel A — should also exceed the spread in their risk-related expected returns. Yet the BBM 
EW return spread, which averages 44 bp (Table 2, Panel B), is 3.5 times larger than the spread 
in the extreme quintiles’ promised yields. Even Table 2, Panel A’s 32 bp (all control) alpha 
spread is more than twice YTM’s spread. 

If BBM proxied for inadequate credit risk or liquidity controls, the BBM anomaly may be 
stronger for bonds that are nearer to default or less liquid. Table 5 adds interactions to Table 
3, Panel A’s regressors, multiplying each BBM quintile dummy or normal score by a dummy for 
the 20 % of bonds that are nearest to default (Panel A’s top half) or 20 % lowest credit rating 
(Panel A’s bottom half). Panel B correspondingly multiplies each BBM quintile dummy by dum-
mies for either the 20 % of bonds with lowest trading volume, 20 % lowest number of trades, 
20 % largest bid-ask spread, or 20 % largest bond gamma (Panel B, appearing top to bottom, 
respectively). For brevity, reported BBM quintile interactions are only with BBM Q5, represent-
ing BBM’s Q5–Q1 alpha spread. A positive coefficient here indicates larger BBM spreads for the 
top 20 % of bonds based on default or illiquidity compared to BBM spreads for the bottom 20 
% of default or illiquidity. 

All of Table 5 Panel A’s specifications have significant BBM Q5 coefficients, implying the BBM 
anomaly remains for the 80 % of bonds least likely to default. However, the interaction dum-
mies are insignificant. For example, in Specification 7’s top half, bonds in the quintile nearer to 
default have a 10 bp per month lower alpha spread than bonds further from default. In all spec-
ifications, the 20 % most likely to default bonds and the 80 % least likely have statistically indis-
tinguishable BBM effects. 

Table 5, Panel B shows similar findings for the first three illiquidity measures. Here, all but two 
of BBM’s 24 interaction terms with the 20 % least liquid bonds are insignificant. The exceptions 
are Specification 2 and 4’s marginally significant volume interaction, for which the least liquid 
bonds exhibit stronger BBM normal score predictability, but only with limited regressor con-
trols. With bond gamma as the liquidity proxy (bottom quarter of Panel B), low liquidity bonds 
earn significantly greater BBM alpha spreads than high liquidity bonds. The significant interac-
tion here is consistent with illiquidity increasing the returns of some bonds and decreasing the 
returns of others, depending on the BBM quintile. This is not a liquidity premium per se, which 
raises the returns of similarly illiquid BMM Q1 and Q5 bonds by similar amounts. We would 
detect such a premium from a significant coefficient on the standalone gamma regressor, but 
gamma is insignificant in all regressions with bond controls. 
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Note that each of Panel B’s 32 regressions demonstrates that all bonds, irrespective of liquidity 
quintile, exhibit significant BBM effects, even when liquidity and its interactions are controlled 
for. Hence, while some forms of illiquidity may enhance the BBM effect, for reasons we will 
explore later, the enhancement is not because BBM proxies for an omitted or poorly measured 
liquidity control. Next, we study whether omitted controls tied to the riskless term structure 
might explain our findings. 

4.3 BBM and lower risk treasury notes and bonds 

If BBM’s anomaly stems from BBM better capturing duration or related interest rate risk 
measures than our controls, Treasuries should exhibit a BBM anomaly. Using CRSP’s US Treas-
ury Database (excluding T-bills, TIPS and Treasuries with special tax provisions) instead of cor-
porate bonds, Table 6 repeats Table 3, Panel A’s regressions with the returns of US Treasuries 
as the dependent variable — dropping regressors that do not apply to Treasuries. Panel A co-
vers the period from July 1961 to December 2019; Panel B covers the period prior to the period 
we study with TRACE; Panel C studies the return period over which we study corporate bond 
returns with TRACE — February 2003 to December 2019. The coefficient on the BBM Q5 
dummy is insignificant for all specifications and all time periods. By contrast, YTM is a significant 
predictor of US Treasury returns. This finding is consistent with our controls for duration and 
term risk being adequate, leaving other risks or, more likely, mispricing as the better explana-
tion for the BBM anomaly in the corporate bond market. 

A placebo test, which censors most Treasury transactions, assesses whether our martingale 
procedure artificially induces a BBM anomaly when trading is infrequent. Here, we force trades 
in Treasuries to mimic the distribution of trading frequencies in the corporate bond market. At 
the end of each month t, Treasury security j is randomly assigned a corporate bond (with re-
placement) from the universe of corporate bonds that belong to one of our end-of-month t 
BBM quintiles. If the martingale procedure for the assigned corporate bond employs the bond’s 
last transaction on day d1 to compute its month t signal, a day d2 transaction for the beginning 
price of its month t + 1 return, and a day d3 transaction for the end price of that return, we 
compute Treasury security j’s month t signal and t +1 return using the latter security’s end-of-
day prices from days d1, d2, and d3, respectively. Other transactions in the Treasury security are 
ignored, forcing it to exhibit the same illiquidity as its assigned corporate bond. We remove 
observations if day d1 is before the bond’s issuance or day d3 falls after the bond’s maturity 
date. After similar assignments to all qualifying Treasury securities in each month, we estimate 
Table 6, Panel C’s regression using the censored Treasury transaction data. 

Table 6, Panel D reports the average values for Table 6, Panel C’s regression coefficients across 
1 000 Monte Carlo simulations. Panel D’s results are virtually identical to Panel C. For example, 
with Specification 5, Panel D’s coefficient on BBM Q5 is an insignificant 0.039, whereas Panel 
C’s coefficient is –0.014. The similarity of Panels C and D validates the martingale procedure as 
an appropriate methodology to assess the BBM anomaly when trading is thin. In work not re-
ported in a table, we repeat Table 6, Panel D but randomly perturb the Treasury prices on the 
three days d1, d2, and de3 by a randomly assigned positive or negative 20 bp, each with equal 
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probability. This procedure mimics the impact of a 20 bp half bid-ask spread. Results with the 
randomly perturbed prices are highly similar. 

4.4 Does BBM factor risk explain the BBM alpha? 

Davis et al. (2000) argue that HML factor betas account for both equity’s book-to-market return 
anomaly and its book-to-market ratio. Here, we construct a bond version of HML and show it 
has only modest ability to diminish the BBM effect. To create an HML-like factor, we parrot 
Fama and French’s (1993) procedure. Each month, we divide bonds into one of six categories 
based on two bond size categories (market value outstanding) and three BBM categories. 
Within each of the two bond size groups (large and small), we compute each month’s return 
spread between a value weighting (proportional to each bond’s market capitalization) of the 
top- and bottom-third BBM bonds. Averaging the ‘large’ and ‘small’ bond return spreads gen-
erates that month’s bond HML factor (BHML). 

Table 7 repeats Table 4’s primary factor regressions, adding BHML factor returns. Table 7’s top 
half corresponds to Table 4 Panel A (the BBW factor model); its bottom half corresponds to 
Table 4, Panel B (the augmented BBW factor model). For brevity, Table 7 only reports intercepts 
and factor betas on BHML. Its rightmost column shows significant differences in Q5–Q1 BHML 
factor beta with both factor models. The first row of the rightmost column also displays a sig-
nificant alpha spread of 15 bp per month (t = 3.11)—4 bp below Table 4, Panel A’s 19 bp spread. 
Including the term structure factor yields a similar, significant alpha spread (14 bp, t = 3.17). 
Table 4’s alpha reduction is no surprise. If we had constructed the BHML factor as an equal 
weighting of the top and bottom BBM quintile returns, mathematics would ensure a zero alpha 
spread. The modestly differing design of BHML similarly leads to a downward bias in the alpha 
spreads, albeit a less dramatic one. Such a bias makes the significance of the Q5–Q1 intercepts, 
even at 14 to 15 bp per month, quite telling. It suggests that it would be conservative to argue 
that factor risk does not fully explain the BBM anomaly. 

5. Junior bonds, trading frequency, and transaction costs 

5.1 BBM’s return predictive ability for all bonds 

Prior analysis studied only senior unsecured bonds with no options other than simple calls. Ta-
ble 8 repeats Table 3, 4, and 7’s regressions, but for all TRACE bonds, including junior and put-
table bonds. Table 8, Panel A, which parrots Table 3’s FM regressions for the all-bond sample, 
reports selected coefficients of interest for brevity. Panel B and C’s factor regressions study EW 
quintiles using Table 4 and 7’s factors, respectively, but report only the intercepts and, for Panel 
C, BHML betas as well. 

Table 8 supplements the traditional sample with corporate bonds that trade less frequently and 
are riskier than the original sample’s senior unsecured bonds. With full controls (Specifications 
7 and 8), Table 8, Panel A’s results are stronger than those from Table 3, Panel A. For example, 
the BBM Q5 dummy’s coefficient in Specification 7 of Panel A is 38 bp per month (t = 4.26); the 
corresponding coefficient from Table 3 Panel A Specification 7 is 32 bp (t = 4.05). Likewise, 
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factor model alpha spreads between BBM Q5 and Q1 — 43 and 48 bp per month for Panel B, 
28 and 28 bp per month for Panel C, all significant — exceed those from the traditional sample’s 
factor models, as outlined in Tables 4 and 7, respectively. Thus, the BBM anomaly is stronger 
for the all-bond sample. 

5.2 Off-market prices 

The literature is ambiguous about whether dealers offer key customers different prices than 
others, or whether central dealers offer bid-ask spreads at discounts or premia when providing 
liquidity. TRACE prices bias inferences if the BBM signal selects time-clustered off-market prices 
below or above mid-market prices. For brevity, the arguments below assume key customers 
get better prices and oligopolistic central dealers offer worse spreads. The arguments merely 
reverse (e.g. bids become asks and vice versa, better becomes worse, higher is lower, etc.) if 
off-market prices imply key customers get wider rather than narrower spreads, or central deal-
ers offer narrower rather than wider spreads. 

Suppose key customers receive better pricing, and their better prices frequently impute 
TRACE’s beginning price for returns. Then customer-dealer trades would earn higher BBM al-
pha spreads than dealer-to-dealer return-initiating transactions. Table 9 analyses this conjec-
ture using Table 3, Panel A’s FM regression methodology. It adds interaction terms to the BBM 
quintile dummies for a return-beginning price that comes from a customer buy or sell transac-
tion. The first column’s 0.328 coefficient on BBM quintile 5 represents the Q5–Q1 alpha spread 
when a dealer-to-dealer transaction generates the return’s beginning price. The interaction 
term with the customer beginning-price dummy is insignificant in both specifications. This re-
futes the hypothesis that customer groups receiving favorable off-market bid and ask prices 
induce spurious BBM correlation with alpha spreads. 

The minimum eight-day gap between the signal and the trade used for the return’s beginning 
price makes the key customer hypothesis an unlikely explanation for our results. If a high BBM 
signal (which comes from transactions at both bids and asks) selects bonds that favored cus-
tomers are buying at the transaction date of the bond return’s beginning price, (with the re-
verse for low BBM signals), the minimum eight-day gap should be sufficient to mitigate the 
signal’s ability to predict the trade direction of specific customer types receiving favored (or 
disfavored) pricing. Below-market ask prices that inflate both BBM and the return’s beginning-
of-month price are theoretically possible. However, with an eight-day gap, it seems unlikely to 
be the source of a 44 bp return spread between Q5 and Q1, let alone the alpha spread observed 
when controlling for the most recent bid-ask spread. 

Further evidence against the key customer hypothesis comes from gap shortening, which 
should increase the spread if favored customers concentrate trades in short time intervals. In-
stead, the spread decreases, albeit negligibly, to 43 bp, if the gap is reduced by 5 trading days. 
When increasing the 8-day gap, even by 16–20 trading days, extreme quintile monthly return 
spreads still exceed 40 bp. 
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The irrelevance of gap lengthening and shortening also refutes claims that the BBM anomaly is 
explained by off-market prices transacted with a central dealer offering liquidity at unfavorable 
terms to its counterparties. According to the central dealer hypothesis, liquidity providing deal-
ers concentrate their trades for periods as long as a month at below-market bid prices for Q5 
bonds, and at above-market ask prices for Q1 bonds. As with favoured customers, the cluster-
ing of central dealer trades could inflate Q5 signals and returns, while deflating Q1 signals and 
returns. 

For the key customer and central dealer hypotheses to hold, off-market prices must also persist 
for no more than 13–15 trading days. If persistence was longer, biases in end-of-month prices 
(typically 13–15 trading days after the beginning-price transaction) would offset the bias in the 
beginning-of-month transaction price, negating any return bias. Hence, evidence showing that 
gap lengthening by up to 16–20 trading days scarcely affects return spreads further refutes off-
market price hypotheses. 

5.3 Buy-and-hold returns 

Many institutional investors rebalance their bond portfolios infrequently, reducing transaction 
costs. Table 10 reports factor model alphas (computed as in Table 4 Panel A) of five yearly 
rebalanced BBM quintiles and the long-short BBM strategy. These yearly rebalanced BBW and 
augmented BBW factor models yield extreme quintile alpha spreads of 12 bp (t = 2.05) and 16 
bp (t = 2.67) per month, respectively17. This suggests that yearly rebalancing approximately 
halves BBM’s risk-adjusted profits. 

5.4 Transaction costs 

BBM’s extreme quintile pre-transaction cost alpha spread assesses market efficiency, but a 
BBM trading strategy is unprofitable if transaction costs exceed gross profits. Corporate bond 
market transaction costs are generally high (Chen et al., 2007; Edwards et al., 2007; Bao et al., 
2011; Feldhütter, 2012), which might deter exploitation of BBM signals as stand-alone ‘arb 
strategies’. Internet Appendix C details how TRACE is used to estimate trading costs from turn-
over and effective half spreads per dollar trade for every BBM quintile in each month. Month t 
two-way turnover is twice the sum of the portfolio weights of the bonds leaving the portfolio 
in month t + 1, thus accounting for both purchases and sales. Equation (4) in Internet Appendix 

 
17 To address statistical pitfalls from 12-month returns that roll over each month, we apply the technique of 
Jegadeesh and Titman (1993). They construct an independent monthly return series that mimics the buy-and-hold 
outcome. Their 12-month buy-and-hold series equally weighs the same-month returns from twelve partially over-
lapping strategies that simultaneously buy bonds based on slightly differing signals. Each quintile employs twelve 
same-quintile indicator signals, differing by signal-delay lags ranging from 0 to 11 months. The technique yields a 
single monthly return series for each quintile that approximates (due to endpoint months and compounding) the 
true buy-and-hold quintile portfolio’s returns. Time series averaging of the difference between quintile 5 and 1’s 
time series vectors is BBM’s buy-and-hold alpha spread. 
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C computes trading costs from two-way turnover. 

While dealers meeting customer liquidity needs execute on the profitable side of the bid-ask 
midpoint, customers can bilaterally negotiate prices with a dealer. Hence, costs may depend 
on the type of investor, the type of trade, and the relative market power dealers have over the 
customer (Bessembinder et al. 2009). Consistent with this, Bao et al. (2011) show that large 
transactions face lower costs in the bond market. Accordingly, we compute two alternative sets 
of transaction costs. The first includes all dealer-to-customer transactions in TRACE-sourced 
bonds; the second is limited to dealer-customer transactions with volumes of at least USD 100 
000. The latter captures trades that incur tighter bid-ask spreads due to larger customers’ 
greater bargaining power with dealers. 

Figure 3 graphs monthly bid-ask spreads for all trades (Panel A) and for large trades (Panel B). 
It displays the average bid-ask spreads for an equal weighting of all BBM quintiles as well as for 
bonds in Q1 and Q5. The overall bid-ask spread patterns are consistent with Choi and Huh’s 
(2019) findings. Figure 3 also shows bid-ask spreads spiking during the 2008–2009 financial 
crisis. 

Table 11 reports average portfolio turnover and transaction costs as well as gross and net per-
formance for trades within BBM’s extreme quintiles. Net performance is the intercept from 
regressing quintile portfolio excess returns net of transaction costs on factors. Subtracting 
transaction costs monthly alters factor betas, so Table 11’s net performance is not exactly equal 
to the difference between Table 4 and Table 10’s average gross alpha and average transaction 
costs. Panel A and B’s alpha columns reproduce Table 4 and 11’s monthly and yearly rebalanced 
factor model alphas, respectively. With monthly rebalancing, the long-short BBM strategy has 
a pre-transaction-cost BBW factor model alpha of 19 bp per month. The transaction cost asso-
ciated with its turnover of 31 % amounts to 50 bp for all investors, which exceeds the alpha 
spreads computed for the strategy. Even applying the (more than 50 %) lower transaction costs 
of 19 bp for large trades to the same gross alpha offers no consolation, yielding an insignificant 
2 bp per month net alpha. Augmented BBW factor model alphas net of transactions costs are 
an insignificant 7 bp per month for large transactions. 

Buy-and-hold (i.e. yearly rebalanced) strategies reduce turnover, as borne out in Panel B with 
turnover of 7 % and monthly transaction costs of 11 bp and 4 bp for all investors and institutions 
(i.e. a trade size of USD 100 000 or more), respectively. While these strategies also earn lower 
risk-adjusted gross profits due to alpha decay, all buy-and-hold alphas net of transaction costs 
are positive. BBW five-factor net profit for all customer trades remain insignificant, but the 
augmented BBW model shows significant net profits of 12 bp (t = 2.06). Thus, the buy-and-hold 
strategy survives the transaction costs incurred by larger trades, typically initiated by institu-
tions, enhancing overall net performance. While institutions may also face additional short 
sales costs and constraints, these can be avoided when merely tilting long-only portfolios to-
wards underpriced and away from overpriced bonds. 
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5.5 Trading costs and arbitrage barriers 

Table 5, Panel B showed that the gamma measure of illiquidity, which is linked to trading costs, 
significantly predicts returns when interacted with BBM. This finding is consistent with trading 
cost heterogeneity deterring arbitrage for some bonds but not others. Bao et al. (2011) find 
that gamma illiquidity correlates with yields, but the paper does not study gamma’s effect on 
returns. Moreover, Table 5, Panel B’s Fama-MacBeth regressions control for yield-to-maturity 
in specifications with bond controls. 

Independent quintile sorts of gamma and BBM further assess whether arbitrage-deterring trad-
ing costs allow large deviations from fair value to emerge. The deviations entice arbitrageurs to 
exploit the profit opportunity and, in so doing, drive the BBM anomaly. Table 12 reports raw 
return spreads along with alpha spreads from the one-factor CAPM model. Table 12 shows 
modest evidence that arbitrage barriers, tied to transaction costs, account for our findings. 
BBM spreads are fairly monotonic across liquidity quintiles, irrespective of whether the portfo-
lios are equal- or value-weighted. While unreported, the largest spread changes are driven by 
illiquidity’s enhancement of BBM Q5’s return. There is little power to assess liquidity’s impact 
on low-BBM bond alphas, as highly illiquid bonds with very low BBM are rare. So, it is possible 
that BBM Q1’s relatively low return for illiquid bonds is statistical noise or stems from other 
arbitrage deterrents, like short sales frictions. 

6. Conclusion 

Differences between the corporate bond and equity markets could influence their relative ef-
ficiency. Researchers have conjectured that the corporate bond market may be relatively more 
efficient because sophisticated institutional investors dominate its trading (Chordia et al., 2017). 
We believe it is less efficient due to its over-the-counter market structure, engendering greater 
trading costs and less pre-trade price transparency. Such illiquidity disincentivises arbitrageurs 
from correcting mispricing that has yet to reach attractive levels. Compounding illiquidity is 
bond removal from the secondary market. Pension funds, insurers, endowments, and mutual 
funds — tend to hold purchases for long periods. 

Rational trades garner profits only when pricing errors shrink. Here, too, bonds differ from 
stocks. Their finite nature and more transparent cash flows mean that bond uncertainty tends 
to resolve with time, bringing fair prices into focus. Arbitrageurs, knowing that bond pricing 
errors will inevitably shrink, rush to seize on opportunities that exceed costs because delay 
invites others to steal those profit opportunities for themselves. For stocks, time’s passage re-
solves some uncertainty, but new uncertainties about increasingly important distant cash flows 
emerge because stocks are perpetual. 

To aid understanding of market efficiency, this paper studies book-to-market’s role in corporate 
bond pricing. Alpha spreads between BBM’s extreme quintile portfolios — 32 bp per month 
with the most extensive controls — are sizable considering the volatility of corporate bonds 
compared to stocks. The raw return spread’s Sharpe ratio, 0.92, exceeds those of both the S&P 
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500 and the Fama and French (1993) HML factor. We study bonds because they have better 
controls for risk and liquidity, and predominantly come from larger firms, making the BBM 
spread even more impressive. 

Our results are conservative. Trades are from signals that become known at least eight days 
prior to the start of the trade month, and we compute returns from intra-month transaction 
prices, eschewing ‘end-of-month’ WRDS bond returns. This lengthens the time between signal 
and implementation by an average of about half a month. In addition, most of our focus is on 
senior unsecured bonds with, at best, simple call options (for which call exercise offers little 
economic advantage). This bond class exhibits negligible default risk in our sample, even more 
so for the investment grade bonds in the class, which exhibit a similarly strong BBM anomaly. 
When we analyse a larger set of TRACE bonds that includes junior bonds, alpha spreads are 
considerably larger. Finally, our application of the martingale assumption to compute returns 
from the prices of intra-month transactions effectively assumes that bonds with no trades or 
one trade have smaller spreads than they actually do. All these assumptions, as well as tax 
considerations, argue for higher BBM spreads than we report. 

The paper also presents evidence that the BBM strategy’s alpha is likely to stem from mispric-
ing, particularly for small-issue bonds. Alternative explanations, like omitted risk, microstruc-
ture, or liquidity controls are inconsistent with the pattern of profits from BBM signal delay, 
calibrations from yield spreads, and BBM signal efficacy for bonds with more default risk, less 
liquidity, or bonds hedged with own-firm equity. Then, there is the irrelevance of callability, 
bond beta, rating, value-at-risk, and market microstructure controls, and the inability of BBW 
factor risk to explain BBM profits, even with an additional HML-like bond factor. The riskless 
term structure cannot explain the BBM anomaly either: BBM does not predict US Treasury re-
turns — even when artificially forcing Treasury transactions data to mimic the sparseness of 
corporate bond transactions. Finally, equity book-to-market and bond book-to-market share 
relatively weak profitability for larger issues. With large issues, volume can offset low profita-
bility per unit of arbitrage, so mispricing never gets very large. Large issues are also cheaper to 
trade, studied more, and are far less prone to information asymmetry. 

It is not surprising that the convergence of some corporate bond prices to their fair values is 
the more plausible explanation for the alpha generated by the BBM anomaly. Bond trading 
faces greater trading and liquidity frictions than several other asset classes, which allows devi-
ations from fair value to exist initially. Indeed, average transaction costs, estimated for different 
trade sizes, are large enough to deter arbitrageurs who would otherwise profit from the anom-
aly’s monthly rebalancing signal. However, institutional strategies with lower turnover, like one-
year buy-and-hold strategies, do earn significant risk-adjusted profits even net of transaction 
costs. Moreover, long-term investors, who incur transaction costs anyway, benefit from know-
ing which bonds have the highest and lowest risk-and liquidity-adjusted returns. Their decisions 
to trade mispriced bonds could be the source of the relatively rapid convergence to fair value 
that we believe is the source of the observed BBM alpha. 
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BBM spreads tend to be larger for higher gamma (i.e. lower liquidity) bonds. This is likely due 
to arbitrageurs devoting their talents to their most profitable opportunities and is not a liquidity 
premium per se. For bonds with large gamma, convergence needs to wait until hedge funds 
find the mispricing large enough to offset its costs. For others, convergence to fair value is left 
to the supply and demand of less sophisticated agents who trade bonds with less haste and 
different motivations. 

Mispricing may explain book-to-market’s effects with other asset classes. If bonds, which have 
adequate risk controls, favor a mispricing explanation for BBM’s effect, mispricing becomes a 
more likely explanation for the related anomalies of other assets, like equity, where controls 
are harder to come by. Consistent with the equity mispricing explanation is equity HML’s miss-
ing premium in the last 25 years, as trading frictions declined and the anomaly became a pop-
ular investor discussion topic. 

BBM ratios are highly negatively correlated with bond prices. While quintile sorts of bond prices 
also predict returns, BBM is a better return predictor. The differences are not striking, however, 
and it would be acceptable to believe that the difference between a bond price anomaly and a 
BBM anomaly is semantic. For equities, this is largely the case as well. It is just that an equity 
share is an arbitrary way to scale a price, making equity book-to-market a less noisy mispricing 
metric than share price. Of course, this assumes that both the bond and equity book-to-market 
premia stem from the same source: mispricing. However, given the many price-related anom-
alies in the equity literature, including book-to-market, their anomalies could plausibly stem 
from the same phenomenon.  
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Figures and Tables 

Figure 1. Transaction timing of prices used for signal and returns 
The figure shows hypothetical examples of how bond transactions are used to construct the signal and 
monthly bond returns. In particular, the bond price PS in month t used to construct the signal is at least 
one week prior to the end of month t. To construct the bond return in month t + 1, we use the first price 
of the bond in month t + 1 as the beginning price PB and the last bond price in month t + 1 as the end 
price PE. 

 

 

Figure 2. Signal delay 
The figure shows average coefficients from Fama and MacBeth (1973) regressions of monthly bond 
returns on bond book-to-market, controlling for other bond and equity characteristics (Specification (7) 
in Table 3, Panel A). Book-to-market quintile dummies lagged by one to twelve months. The table em-
ploys quintile dummies for quintiles 2, 3, 4, and 5 of each characteristic as regressors, but the figure 
displays only the coefficient on the quintile 5 dummy for bond book-to-market. 
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Figure 3. Monthly bid-ask spreads for bond book-to-market quintiles 
The figure shows monthly bid-ask spreads by bond book-to-market quintiles, separately for all transac-
tions (Panel A) and institutional transactions (Panel B). Every day, we take the average of buy transac-
tions and sell transactions for all bonds in each quintile. We take the average of daily prices in a month 
separately for buys and sells and compute the quintile-level bid-ask spreads from the average buys and 
sells for the month. The figure shows the spreads for quintile 1 (lowest BBM), quintile 5 (highest BBM) 
and the average of all quintiles. 

 

Panel A. All transactions 

 

 

Panel B. Institutional transactions 
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Table 1. Summary statistics 
The table reports statistics on the offering price of corporate bonds (Panel A), and the time difference between 
the transaction dates of the bond prices PS used to construct the bond book-to-market signal in month t and bond 
prices used as beginning of month prices PB to construct bond returns in month t + 1 (Panel B). Panel A reports 
the distribution of offering prices per USD 100 of face value, separately for the sample of senior, unsecured bonds 
(‘Traditional Bonds’) and all bonds including junior bonds or bonds with embedded options (‘All Bonds’). Panel B 
reports the difference in calendar days between the transaction date for beginning-of-month price in month t + 1 
(used to construct the bond’s return in month t + 1) and the transaction date for month-t trading signal. Statistics 
are computed using bond-level panel data, separately for traditional bonds as well as all bonds. The return sample 
period is February 2003 to September 2020. 

 

Panel A. Offering price statistics 

 

 

Panel B. Time difference between trading signals and bond return 

 

 

Table 2. Portfolio sorts by bond book-to-market 
The table reports summary statistics of bond and firm characteristics by bond book-to-market (BBM) quintiles 
(Panel A), averages and selected test statistics of monthly portfolio returns from intra-month prices (Panel B), 
averages of monthly portfolio returns and current yields from inter-month prices by number of month t +1 trades 
(Panel C), and statistics on beginning and end prices for returns (Panel D). Panel A’s numbers are time series aver-
ages of equal weightings of each month’s characteristics across all observations (‘All’), observations for each BBM 
quintile (Q1, …, Q5) that month, and each month’s cross-sectional correlation of BBM with the characteristic (‘Cor-
relation’). The panel also reports the time-series average of the monthly difference between the average charac-
teristics of the fifths and first BBM quintile as well as the associated t-statistic. Panel B reports time series averages 
of each month’s equal- and value-weighted returns, the return spread between the BBM Q5 and Q1 portfolios, as 
well as the fraction of positive BBM Q5–Q1 return spreads. It reports results separately for all bonds, as well as 
bonds below (‘Small Bonds’) and above (‘Large Bonds’) the monthly median bond value from sequential sorts on 
BBM and then bond value. Panel C’s first three rows report equally weighted average monthly returns, separately 
for all observations, as well as for bonds that trade never or only once in month t + 1. Returns are based on Panel 
B’s formula, found in the text, except that the price transacted just prior to the trade date of month-t’s signal’s 
price is month t + 1 return’s beginning-of-month price, the price first transacted after month t + 1 is the return’s 
ending price, and the price change is scaled by the number of months (including fractional months) between the 
price pair. Panel C’s bottom row reports the current yield (per month) of one-trade bonds. Panel D reports the 
fraction of beginning and end prices for returns at bids, asks, and from dealer-to-dealer transactions by BBM quin-
tiles. The fractions are scaled so that they sum to 100% for each quintile. The sample consists of nonfinancial firms 
with US dollar-denominated, senior unsecured corporate bonds without embedded options other than call op-
tions. 

 

N Mean Minimum 1 5 10 25 50 75 90 95 99 Maximum
Traditional Bonds 8,925 99.6 40.8 97.3 98.7 99.1 99.5 99.8 99.9 100.0 100.0 100.0 106.9
All Bonds 12,643 99.6 25.0 97.6 98.9 99.2 99.6 99.9 100.0 100.0 100.0 100.0 112.6

Percentiles

N Mean 1 5 10 25 50 75 90 95 99
Traditional Bonds 458,139 15.9 8.0 8.0 8.0 9.0 11.0 14.0 26.0 37.0 88.0
All Bonds 565,093 19.3 8.0 8.0 8.0 9.0 11.0 18.0 34.0 51.0 133.0

Percentiles
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Panel A. Bond and firm characteristics 

 

 

(continued) 

All Correlation Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM) Average t -statistic
Bond Book/Market 0.963 1.00 0.845 0.923 0.961 0.994 1.094 0.250 [35.9]
Bond Mispricing -0.001 0.29 -0.011 -0.005 -0.001 0.003 0.011 0.022 [34.3]
Bond Coupon Rate 5.513 -0.30 6.818 5.866 5.321 4.744 4.816 -2.002 [-30.5]
Bond Yield 4.779 0.42 4.682 4.218 4.341 4.469 6.191 1.509 [9.9]
Bond Credit Spread 1.579 0.35 1.466 1.300 1.325 1.230 2.571 1.105 [8.3]
Bond Value 532.2 -0.10 610.7 564.3 522.3 508.4 455.2 -155.5 [-14.5]
Bond Face Value 501.7 -0.03 508.0 517.5 500.2 503.2 479.8 -28.20 [-2.5]
Bond Age 4.870 -0.16 7.268 5.083 4.373 3.702 3.926 -3.342 [-16.4]
Bond Maturity 11.18 -0.10 16.41 10.184 8.832 8.445 12.02 -4.385 [-11.0]
Bond Duration 6.984 -0.14 9.388 6.666 5.924 5.688 7.248 -2.140 [-10.2]
Bond Rating 8.159 0.24 7.462 7.901 8.144 8.173 9.126 1.663 [17.2]
Bond Reversal 0.685 -0.05 0.814 0.706 0.665 0.639 0.662 -0.152 [-1.2]
Bond Momentum 3.421 -0.22 4.548 3.752 3.354 2.935 2.871 -1.677 [-3.2]
Bond Volume 49.23 0.10 33.08 40.35 47.66 56.20 68.86 35.78 [13.5]
Bond Volume Institutions 47.93 0.09 32.45 39.10 46.18 54.68 67.25 34.80 [13.3]
Number of Trades 103.1 0.14 56.94 93.42 111.1 118.9 135.1 78.17 [14.7]
Number of Trades Institutions 30.66 0.13 18.93 26.15 30.97 35.31 41.93 23.00 [14.6]
Bond Bid/Ask Spread 0.495 0.19 0.470 0.436 0.447 0.469 0.682 0.212 [10.8]
Bond Bid/Ask Spread Institutions 0.198 0.14 0.205 0.181 0.179 0.181 0.258 0.054 [8.4]
Bond Gamma 0.003 0.17 0.003 0.002 0.003 0.003 0.007 0.003 [6.4]
Number of Bonds Outstanding 37.90 0.00 37.83 30.81 32.75 39.84 48.30 10.47 [3.2]
Number of Days from Beginning of Month 2.907 -0.08 3.899 2.843 2.602 2.587 2.741 -1.158 [-9.9]
Number of Days from End of Month 2.743 -0.08 3.727 2.714 2.478 2.413 2.508 -1.219 [-10.6]
Bond Volatility 0.006 0.02 0.006 0.005 0.004 0.006 0.009 0.003 [6.2]
Bond Market Beta 0.880 0.05 1.006 0.825 0.738 0.731 1.129 0.123 [5.1]
Bond Value-at-Risk 0.033 0.27 0.035 0.028 0.026 0.029 0.054 0.020 [11.0]
Bond Institutional Ownership 51.91 -0.20 58.37 54.99 51.25 47.57 46.29 -12.08 [-28.3]
Distance to Default 9.488 -0.17 10.097 9.771 9.479 9.490 8.605 -1.492 [-15.9]
Nearness to Default -9.488 0.17 -10.10 -9.77 -9.479 -9.490 -8.605 1.492 [15.9]
Investment Grade 0.863 -0.24 0.954 0.910 0.869 0.854 0.726 -0.227 [-19.3]
Non-Investment Grade 0.137 0.24 0.046 0.090 0.131 0.146 0.274 0.227 [19.3]
Bond Offering Price 99.49 0.05 99.23 99.49 99.55 99.61 99.56 0.331 [21.0]
Equity Mispricing 0.080 0.00 0.049 0.074 0.088 0.080 0.129 0.080 [3.9]
Equity Market Capitalization 42,720 -0.06 48,318 39,548 40,351 45,811 39,560 -8,758 [-7.4]
Equity Book/Market 0.652 0.20 0.591 0.601 0.604 0.640 0.825 0.234 [8.3]
Equity Beta 0.979 0.16 0.891 0.925 0.963 0.987 1.127 0.236 [16.3]
SUE -0.003 -0.10 0.001 0.001 0.000 0.000 -0.016 -0.017 [-4.3]
Gross Profitability 0.226 -0.04 0.230 0.232 0.231 0.228 0.212 -0.018 [-5.2]
Earnings Yield 0.012 -0.28 0.056 0.053 0.047 0.038 -0.134 -0.190 [-11.0]
Equity Short-term Reversal 1.028 -0.03 1.067 1.061 1.051 1.053 0.910 -0.156 [-0.5]
Equity Momentum 10.59 -0.14 13.27 12.22 11.73 10.46 5.269 -8.002 [-10.6]
Equity Long-term Reversal 54.19 -0.10 58.54 58.03 56.28 54.01 44.13 -14.42 [-11.4]
Accruals 0.098 -0.03 0.093 0.105 0.112 0.107 0.077 -0.015 [-2.5]

Bond Book/Market (BBM) Quintiles Q5-Q1 (high - low BBM)
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Table 2. Portfolio sorts by bond book-to-market (continued) 
Panel B. Average portfolio returns 

 

 

 

 

Panel C. Scaled monthly portfolio returns from inter-month transactions and one-trade bond current yield 

 

 

 

  

All Correlation Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM) Fraction > 0 p-value Average t-stat
All Bonds Equal-weighted Bond Return (t +1) 0.660 0.04 0.566 0.544 0.576 0.655 1.011 0.63 [0.00] 0.444 [3.86]

Value-weighted Bond Return (t +1) 0.572 0.04 0.526 0.500 0.530 0.584 0.934 0.59 [0.01] 0.408 [3.58]
Small Bonds Equal-weighted Bond Return (t +1) 0.798 0.04 0.660 0.621 0.675 0.776 1.170 0.61 [0.00] 0.511 [3.42]
Large Bonds Equal-weighted Bond Return (t +1) 0.557 0.04 0.494 0.483 0.502 0.568 0.905 0.60 [0.00] 0.411 [3.67]

Bond Book/Market (BBM) Quintiles Q5-Q1 (high BBM - low BBM)

Number of Trades
in Month t  + 1 All Correlation Obs. Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM) Fraction > 0 p-value Average t-stat

Any Equal-weighted Bond Return (t +1) 0.576 0.06 517,353 0.510 0.495 0.481 0.505 0.889 0.58 [0.65] 0.379 [3.09]

Zero Equal-weighted Bond Return (t +1) 0.450 0.09 64,705 0.363 0.385 0.296 0.267 0.902 0.54 [10.86] 0.539 [2.51]

One Equal-weighted Bond Return (t +1) 0.511 0.04 5,512 0.340 0.377 0.703 0.694 0.611 0.57 [3.68] 0.268 [2.35]
Equal-weighted Current Yield (t +1) 0.450 -0.24 5,512 0.469 0.454 0.428 0.418 0.441 0.24 [99.98] -0.040 [-2.05]

Bond Book/Market (BBM) Quintiles Q5-Q1 (high BBM - low BBM)
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Panel D. Fraction of beginning and end prices for returns at bids and ask 

 

 
 

 

Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
Ask Ask 9.4% 9.4% 10.2% 11.1% 12.0%
Ask Bid 10.7% 9.4% 9.0% 9.1% 9.3%
Ask Dealer 5.9% 6.4% 6.8% 7.3% 7.6%

Bid Ask 12.8% 13.0% 13.4% 13.5% 12.5%
Bid Bid 16.1% 15.0% 13.8% 12.9% 12.3%
Bid Dealer 10.2% 11.0% 10.9% 10.6% 9.6%

Dealer Ask 9.4% 10.1% 10.8% 11.5% 12.2%
Dealer Bid 13.9% 12.8% 11.8% 11.1% 11.2%
Dealer Dealer 11.6% 12.9% 13.2% 12.9% 13.2%

Bond Book/Market (BBM) QuintilesBeginning Price of Bond 
Return in t  + 1

End Price of Bond 
Return in t  + 1
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Table 3. Fama-MacBeth cross-sectional regressions 
The table shows results from Fama and MacBeth (1973) regressions of monthly bond returns on bond and stock char-
acteristics and control variables. Across different specifications, returns are regressed against prior month values for 
bond book-to-market, bond coupon rate, bond yield to maturity, bond credit spread, bond value, bond age, bond 
maturity, bond duration, bond bid-ask spreads, lagged bond returns, bond momentum, bond credit rating, nearness 
to default, equity market beta, equity book-to-market, equity market capitalisation, equity short-term reversal, equity 
momentum, equity long-term reversal, accruals, standardised unexpected earnings surprise (SUE), gross profitability, 
and earnings yield. Panel A employs quintile dummies for the characteristics as regressors except for bond book-to-
market in even-numbered specifications, which employ the normal score of bond book-to-market. Each month’s quin-
tiles are determined from sorts of bonds with non-missing values for all characteristics. Size (market capitalisation) 
quintiles are based on NYSE breakpoints. The regressions include dummy variables for quintiles 2, 3, 4, and 5 of each 
characteristic, but the table displays only the coefficients of the quintile dummy with the largest amount of the char-
acteristic (Q5) for brevity. Additional controls are the number of outstanding bonds of a firm, the percentage of bond 
market capitalisation of a firm that trade in a month, and the number of days from the beginning and end of the month 
of bond price data used to calculate the bond return. All regressions include industry dummy variables based on the 
38 Fama and French industry classifications. Panel B shows results for various robustness tests. Panel B Specification 
(1) uses parametric versions of the control variables, while Specifications (2)–(6) use non-parametric controls as in 
Panel A. Panel B Specification (2) uses the monthly bond return from trader marks provided by Merrill Lynch as a 
dependent variable, while Specification (3) uses Merrill Lynch data to construct both the monthly bond return as well 
as bond book-to-market. In Panel B Specification (4), the regressand is an unbiased estimate of each bond’s equity 
hedged return using the equity of the bond issuer. We estimate hedge ratios as the predictions of hedonic panel 
regressions of each bond’s return on interactions between the monthly equity return of the bond issuer in excess of 
LIBOR and 131 dummies representing the bond’s 61 (non-collinear) characteristics, including 38 industry dummies. 
The bond return component from flat prices is rescaled to alleviate biases from thin trading. The dependent variable 
in Panel B Specification (5) is the equity return of the bond’s issuing firm. Panel B Specification (6) uses the same 
regression model as Panel A Specification (7) but restricts the sample to bonds that are investment grade (‘Investment 
Grade Bonds’). The table shows average coefficients and test statistics as well as the average number of observations 
and average adjusted R-Squared. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % level, respec-
tively. 

(continued) 
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Table 3. Fama-MacBeth cross-sectional regressions (continued) 
Panel A. Baseline model 

 
(continued)

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Bond Book/Market Q5 0.441 [3.62] *** 0.445 [3.64] *** 0.265 [3.21] *** 0.320 [4.05] ***
Bond Book/Market (normal score) 0.139 [3.13] *** 0.140 [3.15] *** 0.096 [2.25] ** 0.117 [3.13] ***

Bond Characteristic Controls
Bond Coupon Rate Q5 0.011 [0.16] 0.055 [0.67] 0.046 [0.74] 0.095 [1.25]
Bond Yield Q5 0.416 [5.78] *** 0.427 [5.96] *** 0.433 [6.11] *** 0.446 [6.27] ***
Bond Credit Spread Q5 0.042 [0.64] 0.016 [0.26] 0.046 [0.69] 0.028 [0.44]
Bond Value Q5 -0.049 [-0.89] -0.036 [-0.66] -0.070 [-1.43] -0.056 [-1.16]
Bond Age Q5 0.035 [0.87] 0.031 [0.75] 0.006 [0.14] 0.003 [0.07]
Bond Maturity Q5 0.122 [0.64] 0.107 [0.59] 0.110 [0.61] 0.094 [0.54]
Bond Duration Q5 0.129 [0.73] 0.157 [0.94] 0.108 [0.64] 0.139 [0.87]
Bond Bid/Ask Spread Q5 0.076 [1.90] * 0.070 [1.86] * 0.070 [1.83] * 0.066 [1.78] *
Bond Reversal Q5 -0.010 [-0.26] -0.012 [-0.30] -0.029 [-0.78] -0.028 [-0.76]
Bond Momentum Q5 0.005 [0.11] 0.002 [0.04] -0.026 [-0.58] -0.027 [-0.63]
Bond Rating Q5 -0.242 [-3.35] *** -0.259 [-3.77] *** -0.219 [-2.61] *** -0.242 [-2.97] ***
Nearness to Default Q5 -0.010 [-0.19] -0.017 [-0.33] 0.041 [0.54] 0.040 [0.54]

Stock Characteristic Controls
Beta Q5 0.028 [0.37] 0.012 [0.16]
Market Capitalization Q5 0.038 [0.54] 0.037 [0.52]
Book/Market Q5 -0.003 [-0.04] 0.000 [0.00]
Short-term Reversal Q5 0.281 [4.42] *** 0.280 [4.47] ***
Momentum Q5 -0.004 [-0.06] 0.003 [0.05]
Long-term Reversal Q5 -0.011 [-0.19] 0.000 [0.00]
Accruals Q5 -0.068 [-1.20] -0.077 [-1.40]
SUE Q5 0.126 [2.40] ** 0.131 [2.54] **
Gross Profitability Q5 0.186 [2.39] ** 0.186 [2.42] **
Earnings Yield Q5 0.045 [0.67] 0.050 [0.77]

Market Microstructure Controls
Number of Bonds in  t +1 0.000 [-0.45] 0.000 [0.07] 0.000 [-0.63] 0.000 [-0.79] 0.000 [-1.12] 0.000 [-0.97]
Percent of Bond Market Cap Traded in t +1 -0.182 [-1.66] * -0.137 [-1.18] -0.169 [-2.02] ** -0.164 [-2.04] ** -0.186 [-1.83] * -0.178 [-1.81] *
Number of Days from Beginning of Month t +1 0.005 [1.74] * 0.007 [2.13] ** 0.002 [0.74] 0.002 [0.79] 0.001 [0.31] 0.001 [0.43]
Number of Days from End of Month t +1 0.015 [4.24] *** 0.016 [4.68] *** 0.012 [3.47] *** 0.012 [3.65] *** 0.010 [3.03] *** 0.011 [3.17] ***
Intercept 0.5244 [3.35] *** 0.620 [3.86] *** 0.643 [3.41] *** 0.695 [3.60] *** 0.481 [3.04] *** 0.540 [3.55] *** -0.239 [-0.55] -0.208 [-0.46]
Observations 1,149  1,149 1,149 1,149 1,149 1,149 1,149 1,149 
Adj. R-Squared 0.11 0.10 0.12 0.11 0.25 0.25 0.28 0.29
Industry Control Yes Yes Yes Yes Yes Yes Yes Yes

(7) (8)(1) (2) (3) (4) (5) (6)
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Table 3. Fama-MacBeth cross-sectional regressions (continued) 
Panel B. Robustness 

  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Bond Book/Market Q5 0.292 [4.52] *** 0.202 [2.52] ** 0.495 [5.03] *** 0.316 [4.82] *** -0.082 [-0.71] 0.307 [5.97] ***

Bond Characteristic Controls
Bond Coupon Rate 0.028 [1.68] * -0.018 [-0.27] 0.093 [1.31] 0.058 [1.10] -0.203 [-1.71] * 0.141 [2.94] ***
Bond Yield 0.102 [2.48] ** 0.333 [4.46] *** 0.206 [2.88] *** 0.448 [6.32] *** -0.252 [-1.54] 0.324 [4.88] ***
Bond Credit Spread -0.034 [-1.09] 0.075 [1.00] 0.137 [1.78] * 0.031 [0.46] -0.054 [-0.41] 0.045 [0.69]
Bond Value 0.000 [0.21] 0.006 [0.09] 0.060 [1.48] -0.060 [-1.27] -0.037 [-0.50] -0.078 [-1.52]
Bond Age 0.005 [1.19] -0.050 [-1.07] 0.015 [0.33] 0.001 [0.03] 0.154 [1.95] * 0.078 [1.68] *
Bond Maturity 0.006 [0.85] 0.226 [0.97] 0.025 [0.11] 0.061 [0.32] 0.482 [1.25] 0.047 [0.30]
Bond Duration -0.009 [-0.42] -0.072 [-0.36] 0.174 [0.79] 0.099 [0.57] -0.207 [-0.51] 0.174 [1.24]
Bond Bid/Ask Spread 0.059 [2.42] ** 0.038 [1.10] 0.002 [0.06] 0.065 [1.72] * -0.147 [-2.47] ** 0.033 [1.14]
Bond Reversal -0.010 [-1.50] 0.059 [1.55] 0.028 [0.71] -0.020 [-0.54] 0.068 [0.97] -0.092 [-2.24] **
Bond Momentum -0.004 [-0.76] -0.072 [-1.39] -0.050 [-1.10] -0.014 [-0.35] 0.144 [1.24] -0.068 [-1.78] *
Bond Rating -0.034 [-3.56] *** -0.011 [-0.10] -0.073 [-0.67] -0.189 [-2.48] ** -0.334 [-1.26] -0.128 [-1.69] *
Nearness to Default 0.011 [1.68] * -0.084 [-1.05] -0.093 [-1.08] 0.029 [0.36] 0.458 [1.58] 0.004 [0.06]

Stock Characteristic Controls
Beta -0.011 [-0.29] 0.105 [1.33] 0.093 [1.27] 0.056 [0.78] -0.145 [-0.45] -0.064 [-0.89]
Market Capitalization 0.002 [0.14] 0.109 [1.31] 0.082 [1.05] 0.029 [0.47] 0.054 [0.21] 0.000 [0.00]
Book/Market -0.041 [-1.79] * -0.026 [-0.30] -0.084 [-1.03] -0.003 [-0.04] -0.016 [-0.06] -0.059 [-0.88]
Short-term Reversal 0.012 [6.15] *** 0.260 [3.45] *** 0.269 [3.50] *** 0.347 [5.14] *** -0.498 [-2.08] ** 0.123 [2.31] **
Momentum 0.001 [2.26] ** 0.108 [1.33] 0.113 [1.37] 0.092 [1.63] -0.511 [-1.61] -0.079 [-1.29]
Long-term Reversal 0.000 [-0.97] -0.179 [-2.48] ** -0.081 [-1.27] 0.045 [0.80] -0.097 [-0.39] -0.057 [-0.97]
Accruals 0.027 [0.75] -0.026 [-0.39] -0.006 [-0.08] -0.042 [-0.75] -0.195 [-1.04] 0.000 [0.00]
SUE 0.250 [0.62] -0.020 [-0.38] -0.016 [-0.29] 0.128 [2.14] ** -0.129 [-0.64] 0.024 [0.45]
Gross Profitability -0.138 [-1.73] * 0.167 [1.48] 0.157 [1.60] 0.145 [1.90] * 0.224 [0.71] 0.187 [2.20] **
Earnings Yield 0.246 [1.35] 0.048 [0.71] -0.010 [-0.18] 0.083 [1.25] -0.203 [-0.96] 0.056 [0.92]

Market Microstructure Controls
Number of Bonds in  t +1 0.000 [-2.10] ** 0.000 [-0.68] 0.000 [-0.27] 0.000 [-0.60] 0.000 [-0.40] 0.000 [-0.06]
Percent of Bond Market Cap Traded in t +1 -0.151 [-1.80] * -0.124 [-0.87] -0.199 [-1.39] -0.145 [-1.48] -0.286 [-0.83] -0.009 [-0.09]
Number of Days from Beginning of Month t +1 0.004 [1.35] -0.003 [-1.05] -0.001 [-0.32] 0.001 [0.20] -0.003 [-0.62] 0.002 [0.54]
Number of Days from End of Month t +1 0.012 [3.35] *** -0.003 [-0.86] 0.000 [0.05] 0.011 [3.20] *** 0.000 [0.02] 0.015 [4.35] ***
Intercept 0.269 [1.10] 0.083 [0.19] -1.290 [-0.88] -0.560 [-1.25] 2.417 [2.22] ** 0.846 [1.27]
Observations 1,139  664   838                1,149 1,169     1,007 
Adj. R-Squared 0.31 0.53 0.53 0.26 0.58 0.28
Industry Control Yes Yes Yes Yes Yes Yes

Investment Grade 
Bonds

Non-Parametric Controls
(1) (2) (3) (4) (5) (6)

Regressions with 
Parametric Controls

Bond Return 
(Merrill Lynch)

BBM and Bond Return 
(Merrill Lynch)

Bond Return – 
Hedge Ratio * 
(Stock Return - 

Libor) Stock Return
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Table 4. Factor model time series regressions 
The table shows results from time series regressions of monthly portfolio returns (in excess of one-month USD LIBOR) on bond factor models. Bonds are sorted 
each month into quintiles based on bond book-to-market (BBM) and combined into equal- or value-weighted portfolios. The table reports intercepts, slope coeffi-
cients, t-statistics, the number of observations, and R-squared separately for each of the five portfolios (Q1, Q2, Q3, Q4, Q5), and for the return spreads between 
the highest bond book-to-market (Q5) and lowest bond book-to-market (Q1) quintiles. Regressors for the BBW (2019) factor model in Panel A are the excess return 
on the bond market portfolio, return spreads based on value-at-risk (the second worst returns in the previous three years), rating (credit rating), illiquidity (Bao et 
al. (2011) measure), and reversal (past one-month return). The Augmented BBW factor model in Panel B further adds a term structure factor, constructed from 
independent triple sorts of bonds into 125 face value-weighted portfolios based on maturity, coupon and credit rating. We take the simple average of returns 
across the 25 portfolios of the top 20 % of bonds in terms of maturity for the long position and do the same for the bottom 20 %. The difference in returns between 
these two extreme maturity quintiles is our term structure factor. Panel C shows intercepts of equal-weighted portfolios for the BBW factor model and the aug-
mented BBW factor model separately for small and large bonds (from sequential sorts on BBM and size based on the median monthly bond value). Additionally, it 
reports alphas from a one-factor ‘CAPM’ model (alternatively from the WRDS returns of a value-weighted index of all corporate bonds and the martingale returns 
of the bonds in our sample), as well as two-factor versions that add equity HML to the CAPM factor. Standard error estimates use the Newey West (1987) procedure. 
∗, ∗∗, and ∗∗∗ indicate significance at the 10 %, 5 %, and 1 % level, respectively. 

Panel A. BBW factor model 

 
(continued)  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Equal-weighted portfolios

Intercept 0.207 [2.92] *** 0.153 [2.72] *** 0.173 [4.48] *** 0.185 [4.76] *** 0.400 [4.63] *** 0.193 [2.17] **
Bond Market Factor (t +1) 0.829 [6.56] *** 0.834 [8.90] *** 0.792 [16.90] *** 0.875 [20.49] *** 0.908 [9.44] *** 0.078 [0.64]
Bond Value-at-Risk Factor (t +1) 0.044 [0.76] -0.054 [-0.98] -0.085 [-2.43] ** -0.172 [-6.80] *** -0.135 [-2.30] ** -0.180 [-1.94] *
Bond Rating Factor (t +1) -0.139 [-3.30] *** -0.071 [-2.63] *** -0.068 [-3.80] *** -0.036 [-2.63] *** 0.213 [5.01] *** 0.352 [4.91] ***
Bond Illiquidity Factor (t +1) -0.257 [-1.66] * -0.173 [-1.11] -0.113 [-1.25] 0.013 [0.24] 0.153 [2.37] ** 0.411 [2.19] **
Bond Reversal Factor (t +1) -0.024 [-0.51] 0.013 [0.35] 0.042 [1.82] * 0.060 [2.45] ** -0.019 [-0.49] 0.006 [0.10]
R-Squared 0.74  0.82  0.89  0.88  0.79  0.60    
Observations 212 212 212 212 212 212

Value-weighted portfolios
Intercept 0.149 [2.26] ** 0.093 [2.16] ** 0.085 [2.99] *** 0.080 [2.45] ** 0.272 [3.42] *** 0.123 [1.44]
Bond Market Factor (t +1) 0.985 [8.35] *** 0.936 [12.59] *** 0.927 [33.94] *** 1.010 [25.90] *** 1.061 [11.70] *** 0.077 [0.61]
Bond Value-at-Risk Factor (t +1) 0.060 [1.22] -0.088 [-2.18] ** -0.131 [-4.66] *** -0.202 [-6.18] *** -0.167 [-2.55] ** -0.226 [-2.42] **
Bond Rating Factor (t +1) -0.190 [-4.33] *** -0.108 [-5.05] *** -0.110 [-7.82] *** -0.070 [-3.88] *** 0.146 [3.21] *** 0.336 [4.38] ***
Bond Illiquidity Factor (t +1) -0.292 [-2.55] ** -0.130 [-1.19] -0.041 [-0.72] 0.053 [0.99] 0.155 [1.10] 0.447 [2.12] **
Bond Reversal Factor (t +1) -0.063 [-1.46] -0.006 [-0.19] 0.032 [1.72] * 0.042 [1.82] * 0.012 [0.24] 0.074 [1.17]
R-Squared 0.80  0.88  0.94  0.93  0.82  0.58    
Observations 212 212 212 212 212 212

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 4. Factor model time series regressions (continued) 
 

Panel B. Augmented BBW factor model 

 
(continued)  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Equal-weighted portfolios

Intercept 0.128 [2.38] ** 0.122 [2.45] ** 0.158 [4.59] *** 0.181 [4.75] *** 0.358 [4.35] *** 0.230 [2.55] **
Bond Market Factor (t +1) 0.639 [5.76] *** 0.761 [8.45] *** 0.755 [14.49] *** 0.864 [18.83] *** 0.807 [6.58] *** 0.167 [1.13]
Bond Value-at-Risk Factor (t +1) -0.092 [-1.54] -0.107 [-1.70] * -0.112 [-2.52] ** -0.180 [-5.00] *** -0.208 [-3.10] *** -0.116 [-1.53]
Bond Rating Factor (t +1) -0.070 [-1.76] * -0.045 [-1.62] -0.055 [-2.44] ** -0.032 [-1.69] * 0.250 [4.30] *** 0.320 [3.86] ***
Bond Illiquidity Factor (t +1) -0.062 [-0.42] -0.098 [-0.62] -0.075 [-0.81] 0.024 [0.45] 0.257 [3.45] *** 0.320 [1.72] *
Bond Reversal Factor (t +1) -0.013 [-0.30] 0.018 [0.47] 0.044 [1.86] * 0.061 [2.42] ** -0.013 [-0.33] 0.000 [0.00]
Bond Term Structure Factor (t +1) 0.255 [5.40] *** 0.099 [2.77] *** 0.050 [1.74] * 0.015 [0.50] 0.136 [1.93] * -0.120 [-1.42]
R-Squared 0.79  0.83  0.90  0.88  0.80  0.61    
Observations 212 212 212 212 212 212

Value-weighted portfolios
Intercept 0.059 [1.33] 0.064 [1.78] * 0.073 [2.95] *** 0.079 [2.56] ** 0.236 [3.06] *** 0.177 [2.11] **
Bond Market Factor (t +1) 0.764 [7.91] *** 0.865 [12.71] *** 0.898 [25.00] *** 1.009 [21.60] *** 0.972 [9.27] *** 0.208 [1.55]
Bond Value-at-Risk Factor (t +1) -0.099 [-2.06] ** -0.139 [-2.80] *** -0.152 [-4.31] *** -0.203 [-5.28] *** -0.231 [-3.16] *** -0.132 [-1.61]
Bond Rating Factor (t +1) -0.110 [-2.76] *** -0.082 [-3.67] *** -0.100 [-5.46] *** -0.070 [-3.23] *** 0.178 [3.14] *** 0.288 [3.43] ***
Bond Illiquidity Factor (t +1) -0.066 [-0.66] -0.057 [-0.54] -0.011 [-0.19] 0.054 [0.94] 0.247 [1.71] * 0.312 [1.48]
Bond Reversal Factor (t +1) -0.049 [-1.35] -0.001 [-0.05] 0.034 [1.72] * 0.042 [1.81] * 0.017 [0.35] 0.066 [1.08]
Bond Term Structure Factor (t +1) 0.297 [6.30] *** 0.095 [2.81] *** 0.039 [1.62] 0.001 [0.06] 0.120 [2.27] ** -0.177 [-2.52] **
R-Squared 0.85  0.88  0.94  0.93  0.83  0.60    
Observations 212 212 212 212 212 212

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 4. Factor model time series regressions (continued) 
 

Panel C. Robustness 

 

  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
BBW Factor Model

Small Bonds 0.339 [4.29] *** 0.263 [3.64] *** 0.312 [5.69] *** 0.343 [5.20] *** 0.608 [4.67] *** 0.269 [2.21] **
Large Bonds 0.113 [1.57] 0.072 [1.57] 0.069 [2.16] ** 0.067 [1.97] ** 0.261 [3.17] *** 0.148 [1.59]

Augmented BBW Factor Model
Small Bonds 0.275 [4.01] *** 0.231 [3.49] *** 0.294 [5.84] *** 0.331 [5.05] *** 0.553 [4.99] *** 0.277 [2.56] **
Large Bonds 0.021 [0.41] 0.041 [1.03] 0.052 [1.91] * 0.066 [2.07] ** 0.225 [2.82] *** 0.204 [2.22] **

CAPM and CAPM + HML Models
Equal-weighted portfolios

Bond Market Index (Own Sample) 0.052 [0.85] 0.053 [1.25] 0.109 [4.03] *** 0.149 [4.16] *** 0.362 [3.44] *** 0.310 [2.11] **
Bond Market Index (WRDS) 0.170 [2.52] ** 0.154 [3.41] *** 0.201 [5.85] *** 0.248 [6.08] *** 0.480 [4.83] *** 0.311 [2.39] **
Bond Market Index (Own Sample) and Equity HML 0.053 [0.89] 0.057 [1.65] * 0.110 [4.84] *** 0.152 [4.28] *** 0.381 [3.61] *** 0.328 [2.23] **
Bond Market Index (WRDS) and Equity HML 0.164 [2.36] ** 0.152 [3.53] *** 0.197 [5.76] *** 0.245 [5.95] *** 0.492 [4.96] *** 0.328 [2.55] **

Value-weighted portfolios
Bond Market Index (Own Sample) -0.055 [-0.85] -0.030 [-1.22] 0.009 [0.54] 0.027 [0.78] 0.237 [2.72] *** 0.292 [2.09] **
Bond Market Index (WRDS) 0.083 [1.13] 0.084 [2.28] ** 0.114 [3.86] *** 0.137 [3.70] *** 0.371 [4.22] *** 0.288 [2.29] **
Bond Market Index (Own Sample) and Equity HML -0.058 [-0.91] -0.032 [-1.38] 0.005 [0.33] 0.027 [0.78] 0.245 [2.81] *** 0.304 [2.19] **
Bond Market Index (WRDS) and Equity HML 0.071 [0.93] 0.074 [1.92] * 0.104 [3.55] *** 0.129 [3.83] *** 0.369 [4.42] *** 0.298 [2.44] **

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 5. Default risk and liquidity interactions 
The table shows results from Fama and MacBeth (1973) regressions of monthly bond returns on bond and stock characteristics with BBM interaction variables for 
bonds with 20% high default risk (Panel A) or 20 % low liquidity (Panel B). In Panel A, in addition to the regressors employed in Table 3 Panel A, all regressions 
include the fifth quintile dummy for nearness to default (top) or bond credit rating (bottom), as well as interactions of these worst credit indicator variables with 
the four quintile dummies for bond book-to-market (odd-numbered columns) or normal score of bond book-to-market (even-numbered columns), respectively. In 
Panel B, all regressions include the fifth quintile dummy for the negative of volume, the negative of the number of trades, the bond bid/ask spread, or the bond 
gamma as well as interactions of these illiquidity indicator variables with the four quintile dummies for bond book-to-market (odd-numbered columns) or normal 
score of bond book-to-market (even-numbered columns), respectively. Volume and the number of trades are multiplied by minus one so that the fifth quintile of 
all four liquidity measures identify bonds with the lowest degree of liquidity. The table shows average coefficients and test statistics as well as the average number 
of observations and average adjusted R-Squared. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % level, respectively. 

Panel A. Default risk 

 
(continued) 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Nearness to Default

Bond Book/Market Q5 * Nearness to Default Q5 -0.047 [-0.30] -0.023 [-0.15] -0.071 [-0.48] -0.100 [-0.73]
Bond Book/Market (normal score) * Nearness to Default Q5 0.111 [1.29] 0.114 [1.32] 0.047 [0.63] 0.080 [1.12]
Bond Book/Market Q5 0.397 [3.82] *** 0.396 [3.77] *** 0.278 [4.04] *** 0.317 [4.31] ***
Bond Book/Market (normal score) 0.103 [2.90] *** 0.106 [2.95] *** 0.095 [3.22] *** 0.107 [3.80] ***
Nearness to Default Q5 0.019 [0.16] -0.039 [-0.52] 0.011 [0.09] -0.035 [-0.47] -0.009 [-0.09] -0.097 [-1.90] * 0.101 [0.82] -0.043 [-0.51]
Observations 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149 
Adj. R-Squared 0.13 0.13 0.14 0.14 0.26 0.26 0.29 0.29
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

Bond Rating
Bond Book/Market Q5 * Bond Rating Q5 -0.036 [-0.26] -0.032 [-0.23] -0.100 [-0.78] -0.006 [-0.05]
Bond Book/Market (normal score) * Bond Rating Q5 0.084 [0.89] 0.086 [0.91] 0.031 [0.37] 0.082 [1.11]
Bond Book/Market Q5 0.411 [3.96] *** 0.411 [3.93] *** 0.275 [4.06] *** 0.293 [4.08] ***
Bond Book/Market (normal score) 0.108 [3.09] *** 0.111 [3.13] *** 0.096 [3.30] *** 0.102 [3.62] ***
Bond Rating Q5 -0.088 [-0.92] -0.070 [-0.84] -0.075 [-0.80] -0.063 [-0.76] -0.201 [-2.18] ** -0.306 [-3.70] *** -0.222 [-2.51] ** -0.314 [-3.46] ***
Observations 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149 
Adj. R-Squared 0.14 0.14 0.14 0.14 0.26 0.26 0.29 0.29
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

(7) (8)(1) (2) (3) (4) (5) (6)
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Table 5. Default risk and liquidity interactions (continued) 
Panel B. Liquidity 

(continued) 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Bond Volume

Bond Book/Market Q5 * Bond Volume Q5 0.091 [1.13] 0.081 [0.95] 0.011 [0.13] -0.025 [-0.31]
Bond Book/Market (normal score) * Bond Volume Q5 0.067 [2.10] ** 0.065 [1.93] * 0.045 [1.41] 0.026 [0.84]
Bond Book/Market Q5 0.394 [3.28] *** 0.401 [3.31] *** 0.262 [3.09] *** 0.306 [3.73] ***
Bond Book/Market (normal score) 0.127 [2.91] *** 0.129 [2.93] *** 0.105 [2.34] ** 0.124 [2.99] ***
Bond Volume Q5 0.112 [2.32] ** 0.169 [5.08] *** 0.063 [1.31] 0.120 [3.99] *** -0.002 [-0.03] 0.031 [0.76] -0.031 [-0.57] -0.002 [-0.05]
Observations 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383 
Adj. R-Squared 0.10 0.10 0.11 0.10 0.22 0.23 0.25 0.25
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

Number of Trades
Bond Book/Market Q5 * Number of Trades Q5 0.021 [0.25] 0.006 [0.07] -0.034 [-0.46] -0.032 [-0.44]
Bond Book/Market (normal score) * Number of Trades Q5 0.008 [0.25] 0.000 [0.00] 0.000 [0.00] -0.005 [-0.20]
Bond Book/Market Q5 0.412 [3.28] *** 0.412 [3.27] *** 0.272 [3.15] *** 0.312 [3.75] ***
Bond Book/Market (normal score) 0.141 [3.05] *** 0.141 [3.02] *** 0.115 [2.51] ** 0.133 [3.14] ***
Number of Trades Q5 0.075 [1.81] * 0.120 [4.43] *** -0.002 [-0.06] 0.025 [0.91] -0.063 [-1.29] -0.046 [-1.33] -0.091 [-1.80] * -0.064 [-1.81] *
Observations 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383 
Adj. R-Squared 0.10 0.09 0.10 0.10 0.22 0.23 0.25 0.25
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

Bond Bid-Ask Spread
Bond Book/Market Q5 * Bid/Ask Spread Q5 0.037 [0.29] 0.046 [0.36] -0.003 [-0.03] 0.027 [0.28]
Bond Book/Market (normal score) * Bid/Ask Spread Q5 0.065 [1.13] 0.068 [1.22] 0.027 [0.60] 0.036 [0.90]
Bond Book/Market Q5 0.365 [3.12] *** 0.368 [3.12] *** 0.252 [3.40] *** 0.295 [3.86] ***
Bond Book/Market (normal score) 0.101 [2.48] ** 0.102 [2.50] ** 0.097 [2.77] *** 0.111 [3.51] ***
Bid/Ask Spread Q5 0.157 [2.67] *** 0.204 [4.32] *** 0.152 [2.64] *** 0.196 [4.15] *** 0.081 [1.48] 0.041 [1.23] 0.062 [1.07] 0.038 [1.07]
Observations 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149 
Adj. R-Squared 0.13 0.12 0.13 0.13 0.26 0.26 0.29 0.29
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

(7) (8)(1) (2) (3) (4) (5) (6)
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Table 5. Default risk and liquidity interactions (continued) 
 

Panel B. Liquidity (continued) 

 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Bond Gamma

Bond Book/Market Q5 * Bond Gamma Q5 0.159 [1.56] 0.150 [1.50] 0.182 [1.89] * 0.177 [1.89] *
Bond Book/Market (normal score) * Bond Gamma Q5 0.072 [1.88] * 0.071 [1.88] * 0.069 [2.21] ** 0.070 [2.43] **
Bond Book/Market Q5 0.394 [3.27] *** 0.390 [3.22] *** 0.151 [1.64] 0.189 [2.35] **
Bond Book/Market (normal score) 0.123 [2.92] *** 0.122 [2.87] *** 0.072 [1.55] 0.091 [2.35] **
Bond Gamma Q5 0.029 [0.47] 0.145 [3.17] *** 0.033 [0.54] 0.138 [2.99] *** -0.096 [-1.37] -0.005 [-0.14] -0.081 [-1.12] -0.006 [-0.17]
Observations 1,096 1,096 1,096 1,096 1,096 1,096 1,096 1,096 
Adj. R-Squared 0.13 0.12 0.13 0.13 0.27 0.27 0.31 0.31
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5) (6) (7) (8)
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Table 6. Treasury bonds 
The table shows results from Fama-MacBeth (1973) regressions of monthly Treasury bond returns on Treasury bond 
characteristics. Treasury bond returns are regressed on bond book-to-market (BBM), coupon rate, yield to maturity, 
market value, age, time to maturity, duration, bid-ask spreads, lagged returns, and cumulative returns from t – 6 to t 
– 1 of Treasury bonds. The regressions include dummy variables for quintiles 2, 3, 4, and 5 of each characteristic, but 
the table displays only the coefficients of the quintile dummy with the largest amount of the characteristic (Q5) for 
brevity. Panels A to C use all daily observations to construct monthly returns, while in Panel D, we randomly match 
each Treasury security that is used in a BBM quintile in a month to a corporate bond. We then use the signal date, 
beginning-of-month date and end-of-month date for the matching corporate bond to calculate BBM for the Treasury 
security, and run regressions using this simulated data set. We simulate the data 1 000 times, and report the average 
of the coefficients, t-statistics, adjusted R-squared, and number of observations across simulations in Panel D. The 
table also shows the average number of observations and average adjusted R-Squared. ∗, ∗∗, and ∗∗∗ indicate statis-
tical significance at the 10 %, 5 %, and 1 % level, respectively. 

 

 

(continued)  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Panel A. 1961.7-2019.12
Bond Book/Market Q5 -0.068 [-1.34] -0.021 [-0.76] -0.029 [-1.31]
Bond Coupon Rate Q5 0.026 [0.97] 0.003 [0.11] -0.011 [-0.58]
Bond Yield Q5 0.283 [3.53] *** 0.223 [4.48] *** 0.194 [4.26] ***
Bond Value Q5 -0.042 [-1.38] -0.055 [-2.49] ** -0.018 [-1.64] *
Bond Age Q5 -0.012 [-0.29] -0.056 [-1.85] * -0.045 [-1.73] *
Bond Maturity Q5 0.124 [1.20] 0.019 [0.69] 0.023 [0.92]
Bond Duration Q5 0.039 [2.17] ** 0.009 [0.86] 0.01 [0.96]
Bond Bid/Ask Spread Q5 0.015 [0.74] 0.007 [0.46] 0.006 [0.36]
Bond Reversal Q5 -0.082 [-2.05] ** -0.075 [-2.41] ** -0.073 [-2.41] **
Bond Momentum Q5 -0.026 [-1.19] 0.021 [0.87] -0.016 [-0.92]
Intercept 0.577 [9.11] *** 0.605 [7.95] *** 0.376 [9.80] *** 0.416 [7.81] *** 0.512 [9.40] ***
Observations 148 148 148 148 148
Adj. R-Squared 0.29 0.78 0.58 0.78 0.79

Panel B. 1961.7-2003.1
Bond Book/Market Q5 -0.050 [-0.89] -0.026 [-0.75] -0.039 [-1.51]
Bond Coupon Rate Q5 0.016 [0.45] -0.011 [-0.39] -0.033 [-1.57]
Bond Yield Q5 0.210 [2.46] ** 0.253 [4.29] *** 0.224 [4.19] ***
Bond Value Q5 -0.056 [-1.21] -0.075 [-2.33] ** -0.019 [-1.17]
Bond Age Q5 0.026 [0.43] -0.050 [-1.36] -0.024 [-0.93]
Bond Maturity Q5 0.093 [1.24] 0.024 [0.76] 0.018 [0.60]
Bond Duration Q5 0.024 [1.45] 0.001 [0.08] 0.000 [-0.04]
Bond Bid/Ask Spread Q5 0.01 [0.42] 0.007 [0.38] 0.000 [-0.02]
Bond Reversal Q5 -0.088 [-1.67] * -0.071 [-1.88] * -0.076 [-2.05] **
Bond Momentum Q5 -0.049 [-1.65] * 0.024 [0.74] -0.030 [-1.40]
Intercept 0.635 [9.44] *** 0.761 [7.35] *** 0.472 [9.02] *** 0.494 [6.88] *** 0.631 [8.76] ***
Observations 117 117 117 117 117
Adj. R-Squared 0.28 0.73 0.52 0.74 0.73

(1) (2) (3) (4) (5)
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Table 6. Treasury bonds (continued) 
 

 

 

 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Panel C. 2003.2-2019.12
Bond Book/Market Q5 -0.113 [-1.03] -0.011 [-0.25] -0.014 [-0.32]
Bond Coupon Rate Q5 0.052 [1.41] 0.036 [0.98] 0.044 [1.21]
Bond Yield Q5 0.463 [2.55] ** 0.080 [1.49] 0.057 [0.86]
Bond Value Q5 -0.016 [-1.23] -0.013 [-1.09] -0.018 [-1.41]
Bond Age Q5 -0.083 [-1.52] -0.067 [-1.28] -0.081 [-1.47]
Bond Maturity Q5 0.167 [0.73] 0.011 [0.24] 0.030 [0.70]
Bond Duration Q5 0.076 [1.62] 0.029 [1.51] 0.035 [1.78] *
Bond Bid/Ask Spread Q5 0.025 [0.64] 0.008 [0.26] 0.018 [0.46]
Bond Reversal Q5 -0.070 [-1.23] -0.081 [-1.54] -0.068 [-1.28]
Bond Momentum Q5 0.020 [0.75] 0.014 [0.50] 0.015 [0.55]
Intercept 0.432 [3.01] *** 0.22 [3.71] *** 0.137 [5.69] *** 0.226 [4.39] *** 0.218 [3.67] ***
Observations 225 225 225 225 225
Adj. R-Squared 0.30 0.89 0.73 0.88 0.89

Panel D. 2003.2-2019.12, Simulated data accounting for infrequent transactions
Bond Book/Market Q5 -0.099 [-1.02] 0.041 [0.76] 0.039 [0.72]
Bond Coupon Rate Q5 0.121 [2.30] ** 0.099 [1.95] * 0.119 [2.23] **
Bond Yield Q5 0.360 [2.45] ** 0.176 [1.35] 0.165 [1.22]
Bond Value Q5 -0.029 [-1.18] -0.022 [-0.92] -0.026 [-1.06]
Bond Age Q5 -0.061 [-1.02] -0.056 [-1.00] -0.058 [-0.95]
Bond Maturity Q5 -0.017 [-0.10] 0.033 [0.51] 0.020 [0.32]
Bond Duration Q5 0.053 [1.02] 0.025 [0.63] 0.026 [0.64]
Bond Bid/Ask Spread Q5 0.013 [0.34] 0.007 [0.21] 0.013 [0.34]
Bond Reversal Q5 -0.053 [-0.77] -0.049 [-0.74] -0.047 [-0.72]
Bond Momentum Q5 -0.020 [-0.30] -0.036 [-0.53] -0.033 [-0.49]
Intercept 0.411 [3.41] *** 0.180 [2.18] ** 0.171 [9.46] *** 0.196 [3.10] *** 0.161 [1.89] *
Observations 201 201 201 201 201
Adj. R-Squared 0.21 0.51 0.44 0.50 0.51

(1) (2) (3) (4) (5)
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Table 7. Factor model time series regressions with bond HML factor 
The table shows results from time series regressions of monthly portfolio returns (in excess of one-month USD LIBOR) on bond factor models augmented with a 
high-minus-low factor based on bond book-to-market (BHML). Bonds are sorted each month into quintiles based on bond book-to-market and combined into equal-
weighted portfolios. The table reports intercepts, slope coefficients, t-statistics, the number of observations, and R-squared separately for each of the five portfolios 
(Q1, Q2, Q3, Q4, Q5), and for the corresponding times-series of return spreads between the highest book-to-market (Q5) and lowest book-to-market (Q1) bond 
quintiles. To form the Bond HML factor, each month, we independently sort bonds into two categories based on bond size (market value outstanding) and three 
based on the BBM ratio. For bonds within each of the two size categories, we value-weight returns (based on bond size) in the two extreme BBM terciles, and 
calculate month t + 1’s return spread of the portfolio. We then average the two value-weighted return spreads to form Bond HML. Regressors for the BBW (2019) 
factor model are the excess return on the bond market portfolio, return spreads based on value-at-risk (the second worst returns in the previous three years), 
rating (credit rating), illiquidity (the Bao et al. (2011) measure), and reversal (past one-month return). The Augmented BBW factor model further adds a term 
structure factor. Standard errors are estimated using the Newey West (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate significance at the 10 %, 5 %, and 1 % level, respec-
tively. 

 

 

  

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
BBW Factor Model

Intercept 0.23 [4.34] *** 0.169 [4.61] *** 0.177 [5.18] *** 0.183 [4.63] *** 0.380 [4.58] *** 0.150 [3.11] ***
BHML Factor (t +1) -0.580 [-9.33] *** -0.423 [-5.45] *** -0.111 [-1.74] * 0.068 [1.79] * 0.505 [5.00] *** 1.085 [15.06] ***
R-Squared 0.848 0.89  0.90  0.88  0.83  0.86    
Observations 212 212 212 212 212 212
5 Factors (see Table 4 Panel A) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.171 [4.29] *** 0.157 [4.74] *** 0.166 [5.70] *** 0.174 [4.66] *** 0.309 [4.48] *** 0.138 [3.17] ***
BHML Factor (t +1) -0.512 [-8.78] *** -0.408 [-4.87] *** -0.097 [-1.40] 0.078 [2.08] ** 0.587 [5.35] *** 1.100 [15.11] ***
R-Squared 0.87  0.89  0.90  0.88  0.84  0.87    
Observations 212 212 212 212 212 212
6 Factors (see Table 4 Panel B) Yes Yes Yes Yes Yes Yes

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 8. Sample of all corporate bonds 
The table shows results for regressions using the sample of all bonds including junior bonds and bonds with embedded options. Panel A shows results from Fama 
and MacBeth (1973) regressions of monthly bond returns on bond and stock characteristics for the same regression specifications as in Table 3 Panel A. The 
regressions include dummy variables for quintiles 2, 3, 4, and 5 of each characteristic, but the panel displays only the coefficients of the quintile dummy with the 
largest amount of book-to-market (Q5) or the normal score of bond book-to-market for brevity. The panel also shows average coefficients and test statistics as well 
as the average number of observations and average adjusted R-squared. Panel B shows results from time series regressions of monthly equal-weighted portfolio 
returns (in excess of one-month USD LIBOR) on bond factor models as in Table 4. For brevity, the panel only displays coefficients and t-statistics for the regression 
intercept as well as the number of observations and R-squared. Panel C shows results from time series regressions of monthly equal-weighted portfolio returns (in 
excess of one-month USD LIBOR) on a risk model augmented with a high-minus-low factor based on bond book-to-market (BHML), following Table 7. The panel 
reports intercepts, slope coefficients, t-statistics, the number of observations, and R-squared separately for each of the five portfolios, Q1–Q5, and for the return 
spreads between the highest bond book-to-market (Q5) and lowest bond book-to-market (Q1) quintiles. For brevity, the panel only displays coefficients and t-
statistics for the regression intercept and the BHML factor as well as the number of observations and R-squared. Standard errors are estimated using the Newey 
West (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % level, respectively. 

 

Panel A. Fama-MacBeth cross-sectional regressions 

 

 

(continued) 

 

 

 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Bond Book/Market Q5 0.575 [4.79] *** 0.569 [4.72] *** 0.336 [3.64] *** 0.384 [4.26] ***
Bond Book/Market (normal score) 0.192 [4.28] *** 0.189 [4.19] *** 0.152 [3.47] *** 0.171 [4.22] ***
Observations 1,315 1,315 1,315 1,315 1,315 1,315 1,315 1,315 
Adj. R-Squared 0.11 0.10 0.12 0.11 0.23 0.24 0.26 0.26
Bond Characteristic Controls (see Table 3) No No No No Yes Yes Yes Yes
Stock Characteristic Controls (see Table 3) No No No No No No Yes Yes
Market Microstructure Controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

(7) (8)(1) (2) (3) (4) (5) (6)
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Table 8. Sample of all corporate bonds (continued) 
Panel B. Factor model time-series regressions 

 

Panel C. Factor model time-series regressions with bond HML factor 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
BBW Factor Model

Intercept 0.203 [3.11] *** 0.219 [3.91] *** 0.308 [6.76] *** 0.473 [8.29] *** 0.636 [6.82] *** 0.433 [5.13] ***
R-Squared 0.77  0.82  0.86       0.76       0.82  0.65      
Observations 212 212 212 212 212 212
5 Factors (see Table 4 Panel A) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.137 [2.60] ** 0.187 [3.86] *** 0.300 [6.90] *** 0.464 [8.78] *** 0.616 [6.77] *** 0.478 [5.67] ***
R-Squared 0.80  0.83  0.86       0.76       0.82  0.67      
Observations 212 212 212 212 212 212
6 Factors (see Table 4 Panel B) Yes Yes Yes Yes Yes Yes

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
BBW Factor Model

Intercept 0.269 [5.11] *** 0.261 [6.27] *** 0.310 [7.46] *** 0.447 [8.12] *** 0.547 [7.16] *** 0.278 [5.70] ***
BHML Factor (t +1) -0.397 [-6.16] *** -0.251 [-3.06] *** -0.016 [-0.24] 0.155 [2.81] *** 0.530 [3.40] *** 0.927 [8.36] ***
R-Squared 0.83  0.86  0.86       0.77       0.87  0.88       
Observations 212 212 212 212 212 212
5 Factors (see Table 4 Panel A) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.212 [5.25] *** 0.235 [7.44] *** 0.302 [8.00] *** 0.428 [8.89] *** 0.495 [7.96] *** 0.283 [6.25] ***
BHML Factor (t +1) -0.351 [-5.04] *** -0.230 [-2.59] ** -0.009 [-0.14] 0.170 [2.86] *** 0.573 [3.32] *** 0.924 [7.86] ***
R-Squared 0.85  0.86  0.86       0.77       0.87  0.88       
Observations 212 212 212 212 212 212
6 Factors (see Table 4 Panel B) Yes Yes Yes Yes Yes Yes

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 9. Off-market prices 
The table shows results from Fama and MacBeth (1973) regressions of monthly bond returns on bond and stock char-
acteristics. BBM quintile dummies have interaction variables for dealer-customer bond transactions with the omitted 
dummy reflecting a dealer-to-dealer transaction. In addition, the regression includes the control variables used in 
Specification (7) of Table 3 Panel A. The table employs quintile dummies for the characteristics as regressors except 
for bond book-to-market in specification (2), which employs the normal score of bond book-to-market. All regressions 
include an indicator variable for customer transactions, defined as cases where the beginning bond price used to con-
struct the return in month t + 1 comes from a customer transaction. The customer transaction indicator is also inter-
acted with the quintiles and the normal score for bond book-to-market. The table shows average coefficients and test 
statistics of selected regressors as well as the average number of observations and average adjusted R-Squared. ∗, ∗∗, 
and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % level, respectively. 

 

 

 

Coef t -stat Coef t -stat
Customer Transaction 0.006 [0.24] 0.019 [1.00]
BondBookToMarketQ2 * Customer Transaction 0.017 [0.51]
BondBookToMarketQ3 * Customer Transaction 0.019 [0.53]
BondBookToMarketQ4 * Customer Transaction 0.041 [1.21]
BondBookToMarketQ5 * Customer Transaction -0.018 [-0.31]
Bond Book/Market (normal score) * Customer Transaction 0.005 [0.23]
Bond Book/Market Q5 0.328 [4.69] ***
Bond Book/Market (normal score) 0.101 [3.18] ***
Observations 1,104  1,104 
Adj. R-Squared 0.27 0.28
Bond Characteristic Controls (see Table 3) Yes Yes
Stock Characteristic Controls (see Table 3) Yes Yes
Market Microstructure Controls (see Table 3) Yes Yes
Industry Controls Yes Yes

(1) (2)
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Table 10. Buy-and-Hold returns 
The table shows results from time series regressions of monthly bond portfolio returns (in excess of one-month USD 
LIBOR) on risk factors. Following Jegadeesh and Titman (1993, 2001), the table measures the monthly performance of 
a portfolio held for 12 months with the following non-overlapping returns methodology: Bonds are sorted each month 
into 12 sets of quintiles based on bond book-to-market (BBM) that is delayed from 0 to 11 months and combined into 
equal-weighted portfolios within the same signal delay cohort. The monthly return that is used in the regression 
equally weights the twelve portfolios that belong to the same quintile. The table reports intercepts and associated t-
statistics separately for each of the five portfolios (Q1, Q2, Q3, Q4, Q5), and for the corresponding times-series of 
return spreads between the highest book-to-market (Q5) and lowest book-to-market (Q1) bond quintiles. Regressors 
for the BBW (2019) factor model are the excess return on the bond market portfolio, return spreads based on value-
at-risk (the second worst returns in the previous 3 years), rating (credit rating), illiquidity (the Bao et al. (2011) meas-
ure), and reversal (past one-month return). The Augmented BBW factor model further adds a term structure factor. 
Standard errors are estimated using the Newey West (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate significance at the 
10 %, 5 %, and 1 % level, respectively. 

 

 

Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Alpha BBW Factor Model 0.208 [3.11] *** 0.151 [2.83] *** 0.165 [4.54] *** 0.195 [5.23] *** 0.332 [4.75] *** 0.124 [2.05] **
Alpha Augmented BBW Factor Model 0.141 [2.63] *** 0.117 [2.43] ** 0.148 [4.51] *** 0.182 [5.77] *** 0.298 [4.72] *** 0.157 [2.67] ***

Q5-Q1          
(high - low BBM)Q1 (low BBM) Q2 Q3 Q4 Q5 (high BBM)
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Table 11. Turnover and transaction costs 
The table shows monthly one-way turnover, transaction costs, as well as gross and net performance of the long-short 
investment strategy based on bond book-to-market for alternatively monthly rebalancing (Panel A) and 12-month buy-
and-hold strategies (Panel B). Results are reported separately for the returns of the portfolios of the lowest bond book-
to-market bonds (Q1), the highest bond book-to-market bonds (Q5) and the spread portfolio (Q5–Q1). Separately for 
the BBW factor model and the Augmented BBW factor model, the first column reproduces the factor alphas from 
Tables 4 and 11, respectively. Regressors for the BBW (2019) factor model are the excess return on the bond market 
portfolio, return spreads based on value-at-risk (the second worst returns in the previous 3 years), rating (credit rating), 
illiquidity (the Bao et al. (2011) measure), and reversal (past one-month return). The Augmented BBW factor model 
further adds a term structure factor. The second column reports one-way turnover (in percent per month). Columns 
3-6 report the average transaction costs based on two-way turnover and transaction cost adjusted (net) performance 
as the intercept of a regression of quintile portfolio returns (in excess of 1-month USD LIBOR) minus monthly transac-
tion costs on the risk factors. Standard errors are estimated using the Newey West (1987) procedure. Daily average 
bid and ask prices are computed by taking the average of all dealer buy and dealer sell transactions for all bonds in a 
quintile. We then take the average of daily bids and asks in a month separately for bids and asks and compute monthly 
bid-ask spreads. We assign these quintile-level half spreads to bonds that join the quintile and calculate transaction 
costs as in Eq. (4). As shown in the column headings, the bid-ask spreads are calculated alternatively for all transactions 
in TRACE (All) and transactions with volume at least USD 100 000 (Institutions). The return sample period is February 
2003 to September 2020. 

 

 

 

Portfolio Alpha
One-Way 
Turnover

Transaction 
Costs

Net 
Performance t -stat

Transaction 
Costs

Net 
Performance t -stat

Panel A: Monthly Rebalancing
BBW Factor Model

Q1 0.207 12% 0.085 0.282 [3.75] *** 0.045 0.250 [3.35] ***
Q5 0.400 19% 0.410 0.032 [0.34] 0.147 0.270 [3.13] ***
Q5-Q1 0.193 31% 0.495 -0.250 [-2.46] ** 0.192 0.020 [0.22]

Augmented BBW Factor Model
Q1 0.128 12% 0.085 0.198 [3.65] *** 0.045 0.165 [3.08] ***
Q5 0.358 19% 0.410 -0.004 [-0.05] 0.147 0.234 [2.76] ***
Q5-Q1 0.230 31% 0.495 -0.202 [-2.03] ** 0.192 0.069 [0.75]

Panel B: Buy-and-Hold
BBW Factor Model

Q1 0.208 2% 0.018 0.226 [3.30] *** 0.009 0.219 [3.20] ***
Q5 0.332 4% 0.090 0.255 [3.60] *** 0.033 0.307 [4.36] ***
Q5-Q1 0.124 7% 0.108 0.029 [0.46] 0.043 0.088 [1.44]

Augmented BBW Factor Model
Q1 0.141 2% 0.018 0.157 [2.89] *** 0.009 0.150 [2.77] ***
Q5 0.298 4% 0.090 0.221 [3.36] *** 0.033 0.273 [4.25] ***
Q5-Q1 0.157 7% 0.108 0.064 [1.04] 0.043 0.123 [2.06] **

All Institutions
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Table 12. Bond return and alphas spreads from quintile sorts of gamma and BBM 
The table reports the average return and alpha spreads between the extreme quintile bond book-to-market portfolios, 
when sorted into bond gamma quintiles (rows). To form the spread portfolios, each month, we independently sort 
bonds into 25 categories based on gamma illiquidity and bond book-to-market. For each gamma quintile, we compute 
the spread in the month t + 1 equal- and value-weighted bond returns (based on bond value outstanding) between 
the top and bottom quintile of bond book-to-market bonds. To estimate alphas, we regress the return spreads on the 
bond market factor constructed using the WRDS bond returns and report the intercept. ∗, ∗∗, and ∗∗∗ indicate statis-
tical significance at the 10 %, 5 %, and 1 % level, respectively. 

 

 

 

 

 

Gamma Quintile Coef t -stat Coef t -stat Coef t -stat Coef t -stat
Q1 (Liquid) 0.271 [1.36] 0.038 [0.20] 0.280 [1.51] 0.077 [0.42]
Q2 0.269 [1.95] * 0.160 [0.93] 0.264 [1.75] * 0.137 [0.78]
Q3 0.404 [3.27] *** 0.260 [2.41] ** 0.447 [3.36] *** 0.316 [2.92] ***
Q4 0.421 [3.14] *** 0.281 [2.30] ** 0.451 [3.53] *** 0.309 [2.83] ***
Q5 (Illiquid) 0.505 [2.63] *** 0.245 [1.41] 0.541 [3.40] *** 0.352 [2.75] ***

Q5-Q1 0.234 [2.38] ** 0.207 [1.75] * 0.260 [2.63] *** 0.275 [2.25] **

Raw Returns
Bond Market 

Index (WRDS) Raw Returns
Bond Market 

Index (WRDS)

Equal-weighted Portfolios Value-weighted Portfolios
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