

European Capital Markets Institute (ECMI) Centre for European Policy Studies (CEPS)

www.ceps.eu

www.eurocapitalmarkets.org

Price formation in commodities markets: financialisation and beyond

Brussels, Italy 09 July 2013 Dr. Diego Valiante ECMI Head of Research – CEPS Research Fellow

Agenda

Agenda

- □ Scope of the report
- Setting the scene
 - A complex marketplace (no one-size-fits-all)
- Physical and futures markets
 - Inventories and price convergence
 - Reference prices
- Key market developments (see press release)
 - International trade (e.g. China)
 - International finance (e.g. monetary policies, deregulation, etc)
 - Technological developments in trading infrastructure (e.g. futures markets)
- What does financialisation mean?
 - Pooling effects
 - Size of financial over physical markets...add spread trading
 - Futures commercial and non-commercial
- Policy conclusions

Scope of the report

Scope of the report

- ECMI-CEPS Task Force Group on commodities price formation
 - 31 commodities firms, plus regulators, academics and independent experts
 - 11 commodities markets (including crude oil)
 - Public event in September
- Price formation mechanisms (long-term view)
 - Storable commodities
 - Areas we looked at...
 - Supply and demand characteristics
 - Market organisation
 - Trading practices and financialisation
 - Market surveillance and transparency

Disclaimer

Disclaimer

Disclaimer!

- Views are not necessarily those of the members or their respective companies.
- The author is responsible for the content of the report!
- The findings of this Final Report do not necessarily reflect the views of all the members of the Task Force, or the views of their respective companies. Members contributed to the Task Force meetings and provided input to the discussions through presentations and relevant material for the Final Report. A set of principles has guided the drafting process to allow all of the interests represented in the Task Force to be heard and to comment on each chapter of the Final Report. Wherever fundamental disagreements arose, the rapporteurs have made sure that all views have been explained in a clear and fair manner. The Final Report was independently drafted by the author who is solely responsible for its content and any errors. Neither the Task Force members nor their respective companies necessarily endorse the conclusions of the Final Report.

A complex marketplace

Complexity

KEY DRIVERS OF COMMODITIES PRICE FORMATION

PRODUCT CHARACTERISTICS

- Quality
- Storability
- Renewability
- Recyclability
- Substitutability
- (Final) usability

DEMAND FACTORS

- Income growth and urbanisation
- Technological developments and alternative uses
- Long-term habits and demographics
- Economic cycle

SUPPLY FACTORS

- Production convertibility and capital intensity
- Horizontal and vertical integration
- Storability and transportability
- Industry concentration
- Geographical concentration (emerging markets)
- · Technological developments
- Supply peaks and future trends

EXOGENOUS FACTORS

- 'Financialisation process' and monetary policies
- Subsidies programmes
- General government interventions (e.g. export bans)
- The economic cycle and other macroeconomic events
- Technological developments
- Unpredictable events (e.g. weather)

MARKET ORGANISATION

- Microstructural developments (e.g. competitive setting)
- Functioning of internationally recognised benchmark futures or physical prices
- International trade
- Expansion of commodities futures markets and 'non-commercial' investors
- Futures markets infrastructure

Product characteristics

. Exposure to exogenous factors

Key product characteristics		Exogenous factors	Examples
Seasonality	>	Weather and currency	Drought
Transportability		Freight market/mobility restrictions	Freight capacity
Alternative uses/substitutability		Other commodities markets	Biofuel policies
Storability		Market/warehouse location	Pipeline disruption
Production yields		External incentives for long-term investments or technological shock	Price subsidies

Source: Author.

Weighting drivers of price formation (1)

11

		Product				Supply						Demand				
		Storability	Substitu tability	Final usability	Freight costs	Alter- native uses	Production convertibility	Capital intensity	Value chain complexity	Industry concentration	Sunk costs	Geographical concentration	Stock- to-use ratio	Income growth urbanisation	Price elasticity	Demand forecast
Energy commodities	Crude oil															
	Natural gas															
	Aluminium															
Industrial metals/raw material	Copper															
	Iron Ore															
Agri-soft commodities	Wheat, Corn, Soybean oil															
	Cocoa, Coffee, White sugar															

High Medium Low or none

2013 © Valiante Diego – Centre for European Policy Studies

Weighting drivers of price formation (2)

н

		Exogenous factors					Market organisation					
		Government intervention	Political instability	Weather	Economic cycle	Crude oil price	Financial layers	Financialisation	Liquid futures	Physical price transparency	Delivery points - accessibility	Downstream concentration
Energy	Crude oil					-						
commodities	Natural gas											
	Aluminium											
Industrial metals/raw material	Copper											
material	Iron Ore											
Agri-soft	Wheat-Corn- Soybean oil											
commodities	Cocoa-Coffee- White sugar											

High

Medium

Low

Physical and Futures Markets

Key 'physical' risks

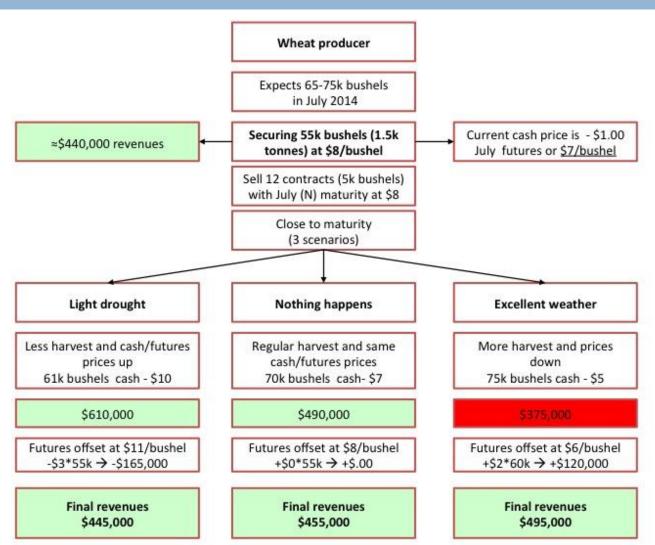
14

Physical markets bring together buying and selling interests in the physical commodity to level supply and demand imbalances, taking into account immediately available inventory levels. The spot price is the price of a commodity that is readily available to be delivered

Key commodity risks

Source: Author.

Key 'physical' risks (2)


- Price risk (market)
- Transportation risk (e.g. logistics)
- Transaction-specific risks:
 - Product risk (e.g. quality)
 - Mismatch risk (e.g. currency)
 - Counterparty risk (e.g. credit risk)

Futures markets

- 16
- <u>Futures markets</u> serve the intertemporal choice of end users by trading expectations on supply and demand patterns ('risk transfer'), which occur mainly through changes of inventory levels over a time period.
- Futures contracts (or 'futures') are <u>agreements between</u> two parties to buy or sell an agreed quantity of an asset (commodity) at a certain future date for an ex <u>ante agreed price.</u>
 - Open platforms matching
 - Margin calls (initial and variations)
 - Leverage from 12 [LIFFE, Wheat] to 34 [CBOT, Soybean oil])
 - Marked-to-market positions
 - Physical delivery (only 2%)

Example: Hedging Trade

17

2013 © Valiante Diego – Centre for European Policy Studies

Key characteristics

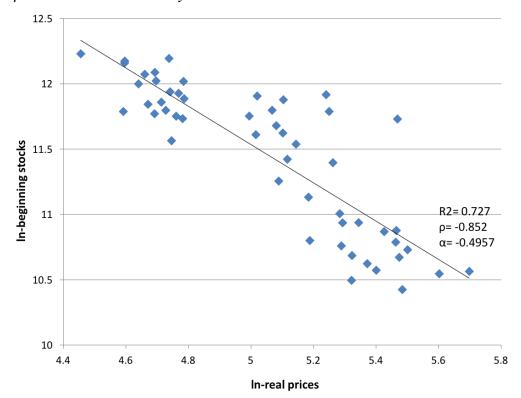
Key characteristics of transactions

	Spot contract	Forward contract	Futures contract		
Nature of transaction	Bilateral	Bilateral	Multilateral		
Nature of transaction	(OTC)	(OTC)	(exchange)		
Transaction terms					
(delivery dates,	Customised	Customised	Standardised		
contract size)					
Price	FOB	FOB/CIF	FOB (or in warehouse)		
Settlement	Physical	Cash/Physical (to maturity/shipment)	Cash (daily) Offset/Physical (to maturity, 'physical' if requested)		
Typical holding period	To delivery	To delivery	Before delivery		
Delivery	Spot	Customised	Selected months		
Storage costs	No	Yes	Yes		
Transaction costs	Medium	Medium/High	Low		
Leverage	No	No	Yes		
Counterparty risk	Limited (spot)	High	Limited (daily mark-to-market)		
Currency risk	No	Limited (choice)	Yes		
Price risk	No	Yes	Yes		
Interest rate risk	No	No	Yes		
Regulation and supervision	Limited	Limited	High		

Source: Author.

2013 © Valiante Diego – Centre for European Policy Studies

Inventories and price convergence

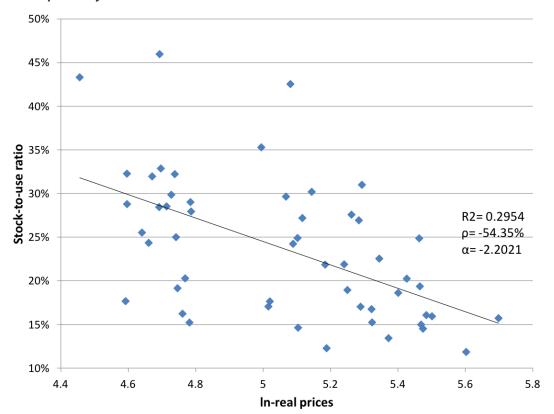

The role of inventories

- Response function to supply and demand factors (through net demand)
 - Absolute values and expectations!
- Key aspect of physical and futures markets
 - Create a barrier against price volatility
 - Minimise the costs of adjusting production due to foreseeable events (e.g. demand volatility or increases in the marginal cost of production)
 - Reduce marketing costs by facilitating production and delivery schedules.
 - Inventories also reduce the impact of unpredictable disruptive events (e.g. weather events).
- Carrying a commodity over time (storage) or incentive to do so has three main costs reflected by the MCY:
 - Costs of physical storage (and insurance)
 - Warehousing costs, insurance, material degradation, and delivery times
 - Opportunity costs
 - Interest forgone (e.g. risk-free)
 - Costs from price risk
 - Benefit of holding the commodity (to be hedged)
- All these aspects (with contango) contribute to <u>'cash-and-carry' trades</u>

Essential in absolute terms...

21

Link between real spot prices and inventories for corn, 1960-2011

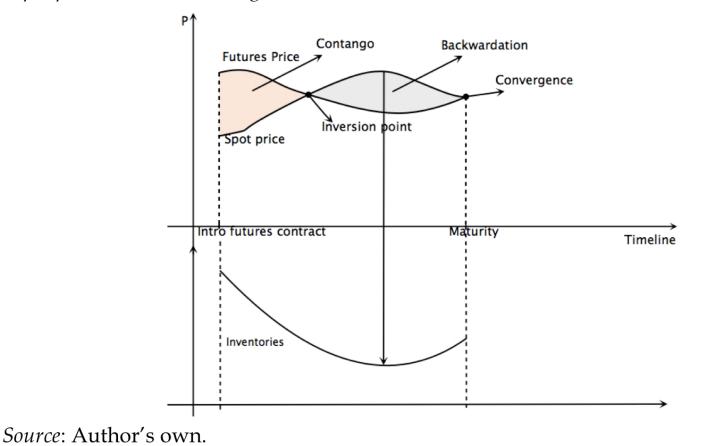


Sources: Author's estimates from US Department of Agriculture (USDA) and World Bank. Note: Natural logarithms.

... and relative terms!

22

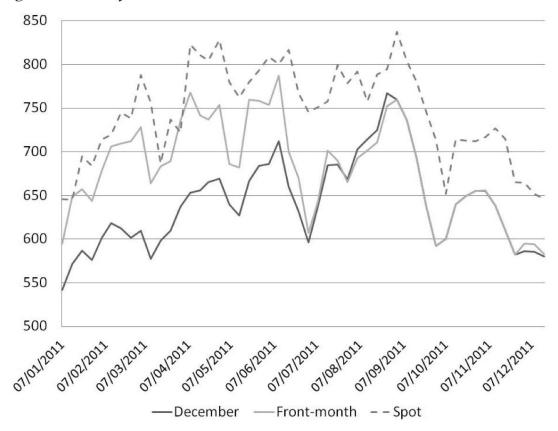
Stock-to-use ratio and real prices for corn, 1960-2011


Sources: Author's calculation from USDA and World Bank. Note: Natural logarithms.

These findings were confirmed by more detailed analyses run for each commodity market! 2013 © Valiante Diego – Centre for European Policy Studies

Futures-spot interaction

23


Futures-spot price interaction through inventories

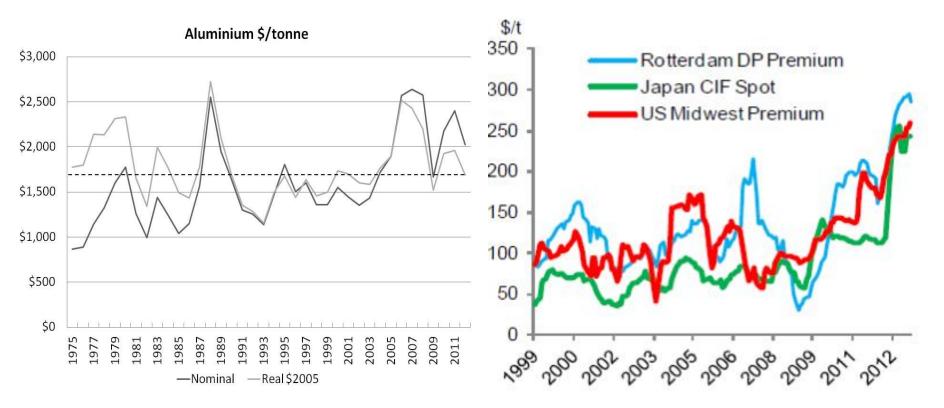
Price convergence

24

Futures price convergence in corn futures contracts

Source: Author's elaboration from CBOT, FAO, USDA. Note: \$cents/bushel; spot price is US No.2, Yellow, U.S. Gulf (Friday).

2013 © Valiante Diego – Centre for European Policy Studies

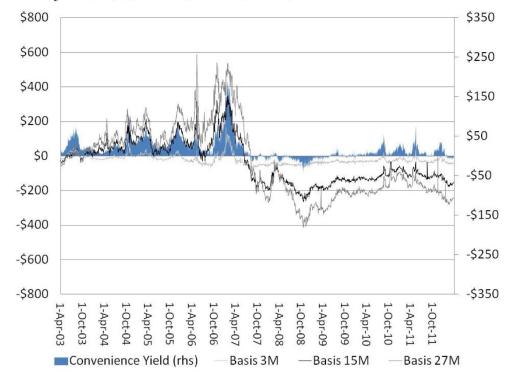

Warehousing and physical delivery

25

- The <u>physical delivery obligation</u>, when the contract is brought to maturity, essentially aligns the futures contracts to the underlying spot market prices close to maturity (<u>'no arbitrage clause'</u>). In around 98% of futures, there is no actual delivery since traders enter into reversal trades (offsetting).
- Actual delivery of the commodity is set a few times a year for futures contracts on exchanges,. Typically, there are no more than four or five delivery dates per year (i.e. every three or four months).
- Different models of warehousing and delivery.
 - The business model of the London Metal Exchange (740 warehouses). Key requirements (LME, 2011):
 - The delivery warrant should identify the <u>specific parcel</u> of metal within the warehouse (plus the exact brand, weight and shape).
 - In the event of <u>bankruptcy</u>, local laws must foresee that no restriction should be placed on owners of metals that want to take possession of the individually identified metal.
 - The warehouse should meet all other requirements that are requested by the <u>international banking finance</u> activities for the warrant to be accepted as a fully negotiable. Each warrant is equivalent to one lot of the commodity.
 - Plus...
 - The warehouse should be located in a <u>area of net consumption</u> and away from areas of production.
 - The area where the warehouse is located should be a key passage for international trading.
 - The location of the warehouse should be safe, politically and economically stable, and with an appropriate fiscal and legal system.
- Warehousing rules and the delivery system should reflect characteristics in underlying market...

The case of aluminium regional premia (1)

- Spot prices vs regional premia
 - Oversupply vs ?
 - Regional premium is roughly 15% of LME nominal price

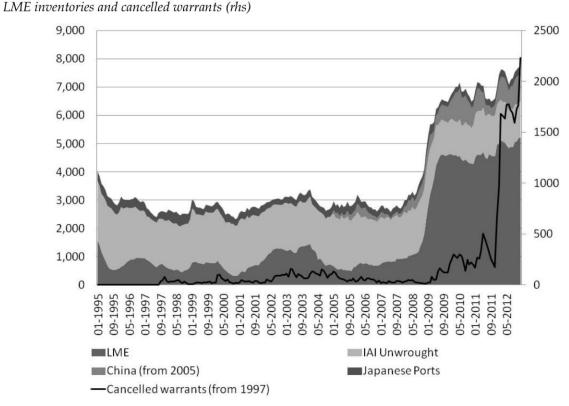


2013 © Valiante Diego – Centre for European Policy Studies

The case of aluminium regional premia (2)

A market in strong contango... ...helped by low convenience yields!

Basis and convenience yield (rhs), Q2 2003-Q1 2012 (\$/tonne)


Source: Author's calculation from LME and the Fed. Note: 'Basis' calculated as differential between cash forward and the maturities mentioned above.

2013 © Valiante Diego – Centre for European Policy Studies

The case of aluminium regional premia (3)

And LME warehousing rules...

- Record of cancelled warrants
- 355 days delays in
 Vlissingen and 272 in
 Detroit
 - Up to \$160/tonne more
- Rules based:
 - Size of WH (before '12)
 - Stored tonnage
 - Loading-in next?

Source: Author's elaboration from Alcoa and LME Sword.

LME stocks (end year)

29

LME aluminium and copper stocks, 2003-2011

Year	Global Production	Global Consumption	LME stocks*	% Global production	Global Production	Global Consumption	LME stocks*	% Global production
		Aluminiu	ım	Copper				
2003	28,002	27,608	1,423	5.08%	15,221	15,315	431	2.83%
2004	29,940	29,957	693	2.31%	15,832	16,671	49	0.31%
2005	31,889	31,689	644	2.02%	16,651	16,680	92	0.55%
2006	33,975	33,935	698	2.06%	17,353	17,007	191	1.1%
2007	38,186	37,411	929	2.43%	18,044	18,143	199	1.1%
2008	39,669	36,900	2,338	5.89%	18,501	18,138	341	1.84%
2009	37,198	34,765	4,624	12.43%	18,613	18,178	502	2.7%
2010	41,112	39,662	4,275	10.4%	19,190	19,365	378	1.97%
2011	43,652	42,027	4,979	11.41%	19,578	19,508	372	1.9%
2012	45,207	45,000	5,100	11.28%	19,951	20,376	300	1.5%

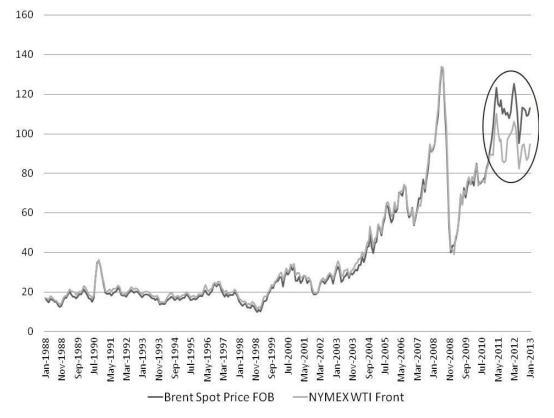
Source: LME, WMBS, International Aluminium Institute, CRU. Thousands of metric tonnes (MT). Note: see Annex for full data from 1992. Note: *end of the year, thousands tonnes. See also sections **Error! Reference source not found.** and **Error! Reference source not found.**

The case of aluminium regional premia (4)

What do we learn?

- Warehousing and delivery rules MUST reflect conditions in the <u>underlying physical market</u>, taking into account the business model of the exchange
- Conflicts of interest policies for market infrastructure are important
 - WHs were key shareholders of LME!
- Lack of clarity on <u>cross-border supervision</u> of international market infrastructures
 - More coordination is needed

Reference prices

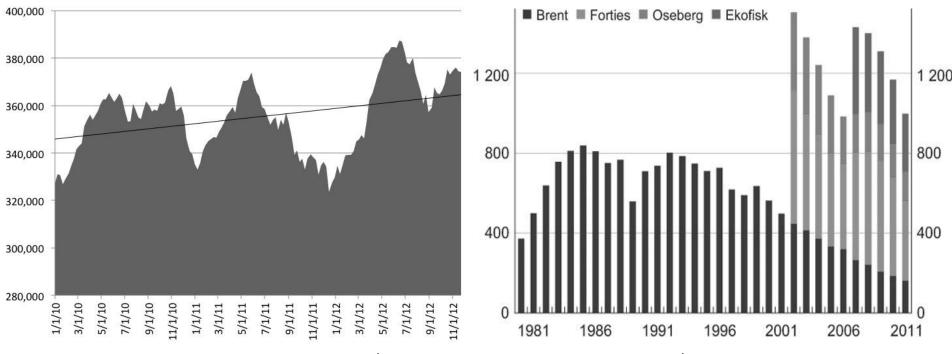

31

- A <u>benchmark (or reference) price</u> is a price recognised by parties as fair for their bilateral transactions (Clark et al., 2001).
- Different types:
 - Rolling front-month futures price (e.g. agricultural commodities)
 - Cash forward price (e.g. for industrial metals)
 - Regional spot market (assessed) prices (such as Dated Brent or IODEX for iron ore)
- <u>Liquid reference prices</u> are not available in every commodities market, however.
 - To accommodate demand and supply, these markets should be competitive and liquid, which means that they will be able to provide a market clearing price at all times, and for all quantities, within a reasonable time frame.
- A recognised international benchmark should:
 - Have enough supply in the underlying reference physical market (supply security)
 - Provide market access and an efficient price discovery system (demand security)
 - Promote competition in the upstream and downstream physical market, and where possible, develop secondary markets for underlying forward contracts.

The case of WTI and Brent

32

Failure to secure supply that reflects underlying international oil markets deteriorates benchmarks...



Source: EIA, Thomson Reuters and World Bank.

The case of WTI and Brent

33

I ... for opposite reasons...

Weekly U.S. Ending Stocks excluding SPR of Crude Oil (k/barrels; Jan 2010 – Nov 2012) (from EIA)

BFOE Production Volumes (kb/d) Source: Spencer (2012) from BP, RBA, Statistics Norway, UK Department of Energy and Climate Change.

Key market developments

Key market developments

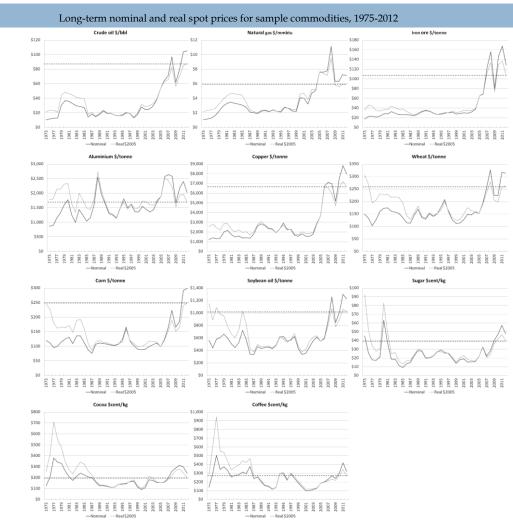
Growth of international trade

- Boosted by WTO agreements (e.g. China's entry)
 - Sudden change in market structure
 - Example: Seaborne freight markets

Technological developments in trading infrastructure

- Promoted 24/7 remote access to futures markets
- Global infrastructures
- Growth of international commodities finance
 - Accommodating monetary policies
 - Access to cheap credit for a prolonged period
 - Deregulation

International trade

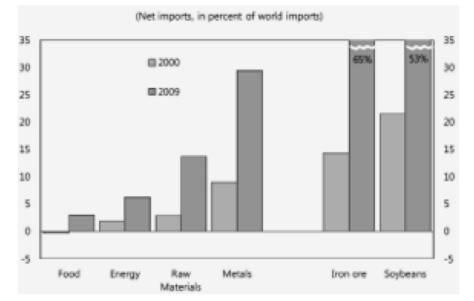

International trade

		Value (\$bn	ı)		Size	
	2001	2011	CAGR	2001	2011	Units
Crude oil	340.1	1,475	16%	38,262.1	38,854	kbbl/day
Natural Gas	82.4	368.5	16%	553.46	1073.32	bcum
Iron ore	14.8	180	28%	493.1	1,072.9	mn/tonnes
Wheat	19.1	47.6	10%	105.92	150.4	mn/tonnes
Aluminium*	16	38.1	9%	11.1	15.87	mn/tonnes
Corn	6.7	34.1	18%	74.67	117.03	mn/tonnes
Coffee	5.4	28.6	18%	5.45	6.81	mn/tonnes
Sugar	4	17.8	16%	21.11	31.12	mn/tonnes
Soybean oil	2.9	11.1	14%	8.25	8.52	mn/tonnes
Сосоа	2.6	8.8	13%	2.47	2.96	mn/tonnes
Copper	na	Na	na	Na	na	na

*Exports are estimates.

Source: Author's calculation from World Bank, USDA, ABREE, BP, OPEC, FAO. See footnote **Error! Bookmark not defined.** for the description of prices used for calculation.

Sustained by higher prices...


Source: Author's elaboration from World Bank. Note: World Bank Manufactures Unit Value Index deflator (representing 15 commodities countries with ad hoc weights, with base year=2005). Dashed line compares 2012 real price with historical trend.

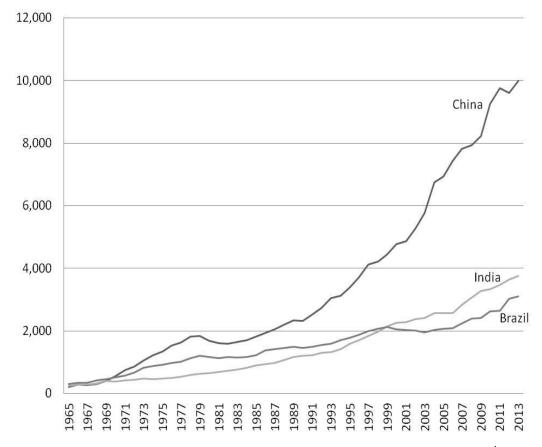
2013 © Valiante Diego – Centre for European Policy Studies

...and strong Chinese demand! (1)

Exports (% tot)	2001	2003	2011
European Union	40.1%	42.0%	35.1%
United States	13.1%	10.9%	9.6%
Japan	5.8%	5.6%	4.2% (4 th)
China	3.9% (5 th)	5.2% (4 th)	9.5% (3 rd)

Chinese net imports (% of world imports)

Source: IMF (2011, p. 4).

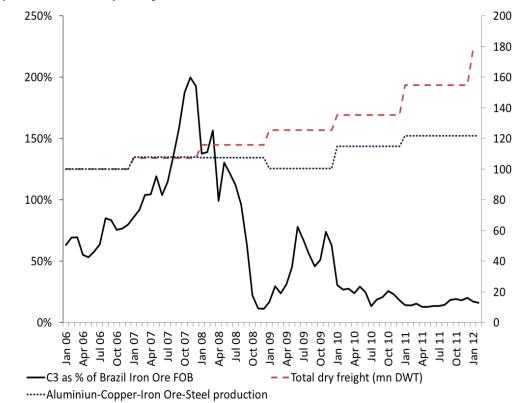

2013 © Valiante Diego – Centre for European Policy Studies

...and strong Chinese demand! (2)

	ProductionConsumption(top 10; % tot)(top 10; % tot)		-	Exports (top 10; % tot)		Imports (top 10; % tot)		
	2001	2011/2012	2001	2011/2012	2001	2011/2012	2001	2011/2012
Crude oil	7 th (4.4%)	5 th (4.9%)	3 rd (6.3%)	2 nd (11.1%)	no	no	n/a	2 nd (14.9%)
Natural Gas	n/a (1.2%)	6 th (3.1%)	n/a (1.1%)	4 th (4.1%)	no	no	n/a	10 th (1.2%)
Iron ore	n/a	2 nd (22.9%)	n/a (13%)	1 st (50%)	no	no	n/a	1 st (60.2%)
Aluminium	2 nd (13.5%)	1 st (41.8%)	n/a	1 st (41.5%)	no	no	5th *	10^{th}
Copper	n/a	1 st (26.4%)	n/a	1st	no	no	n/a	1^{st}
Wheata	2 nd (16%)	2 nd (7.7%)	2 nd (18.5%)	2 nd (17.9%)	no	no	no	no
Corn ^a	2 nd (19%)	2 nd (15%)	2 nd (1.8%)	2 nd (22.4%)	no	no	no	no
Soybean oil ^a	4 th (12.4%)	1 st (26.2%)	2 nd (14.7%)	1 st (28.9%)	3rd	1 st	no	no
Sugar ^a	5 th (5.2%)	4 th (7.2%)	5th (6.7%)	3rd (9%)	no	no	7 th	4 th
Cacao	no	no	no	no	no	no	9th	8 th
Coffee	no	no	no	no	no	no	no	no

...and strong Chinese demand! (3)

□ Crude oil, for instance...

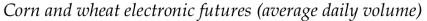


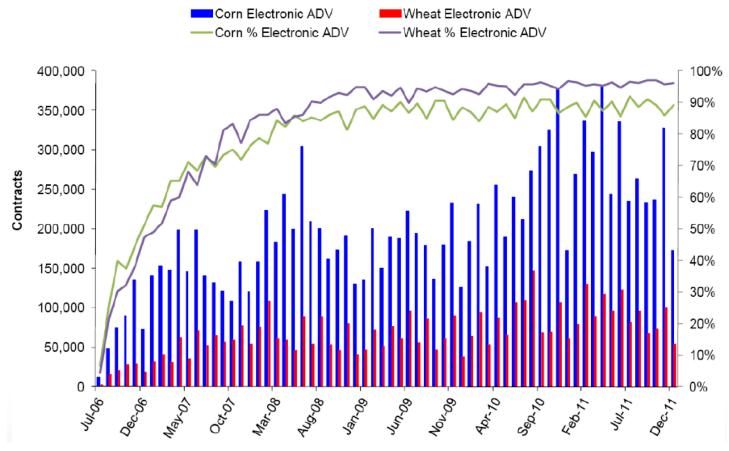
Source: Authors' elaboration from BP Stats and IEA (2013). kbbl/day

2013 © Valiante Diego – Centre for European Policy Studies

Example: Seaborne freight markets

Freight rates and total production/capacity (2006=100)

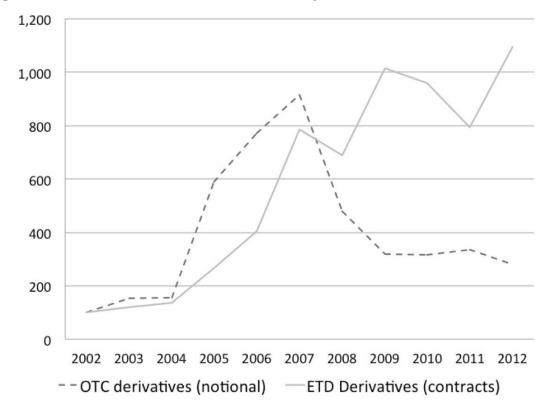

Sources: Author's elaboration from ICAP, UNCTADstat, WBMS, World Steel Association (WSA), LKAB.


Technological developments and market infrastructure

Market infrastructure developments

- New trading technologies
 - 24/7 remote market access
 - Trading methodologies (e.g. HFT)
 - Exploit more arbitraging opportunities
- New role of market infrastructures
 - Exponential growth in recent years
 - Competitive global markets
 - Ensuring access without undermining intellectual property
 - Unintended impact of regulatory reforms on <u>market</u> <u>power</u>

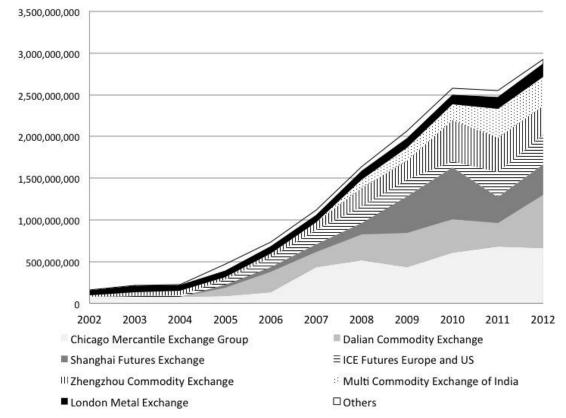
Electronic trading


Source: CME Group.

2013 © Valiante Diego – Centre for European Policy Studies

Futures markets and OTC

46


. Growth of Exchange-traded and over-the-counter commodity derivatives (2002=100-2012)

Source: Author's calculations from BIS, WFE, ECMI (2012). Note: Exchange-traded data on number of contracts might be underestimated before 2008. Data include futures only for exchange-traded contracts.

Global market infrastructure

Growth of commodity futures exchanges volumes by number of contracts, 2002-2012

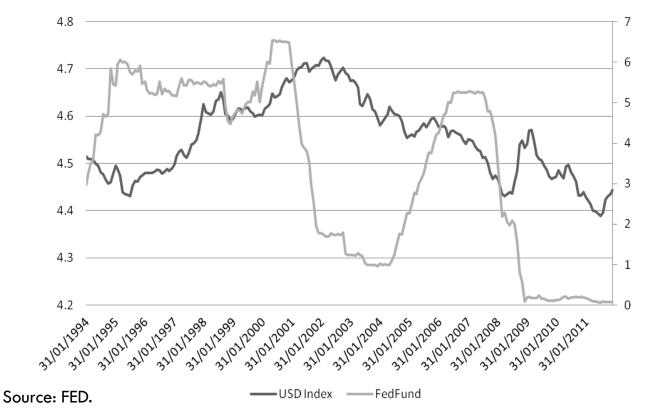
Note: 2012 data for Multi Commodity Exchange of India is from 2011. *Source*: Author's calculations from WFE and ECMI (2012).

ETD versus OTC

48

Notional value of outstanding commodities futures and options traded OTC and on exchange (\$ bn)

	Exchange-traded		Over-the-counter		Total	
	2011	2012	2011	2012	2011	2012
Futures	3,226	3,168	1,745	1,363	4,971	4,531
rutures	(65%)	(70%)	(35%)	(30%)		
Futures and options	3,585	3,485	2,570	2,101	6,155	5,584
rutures and options	(58%)	(62%)	(42%)	(38%)	0,100	


Note: Exchange-traded data are conservative estimates derived from turnover value of futures and options contracts. Value of over-the-counter positions is not daily marked-to-market. *Source*: Author's estimates from WFE/IOMA, BIS, CME, LIFFE, LME, ICE, other sources.

International commodities finance

Accomodating monetary policies

50

Dollar Broad Index and interbank interest rates (rhs) (1994-2011)

2013 © Valiante Diego – Centre for European Policy Studies

Weight of financial institutions

Credit channeled by big financial institutions...

Top 12 most active financial institutions in commodities derivatives, by notional/total assets

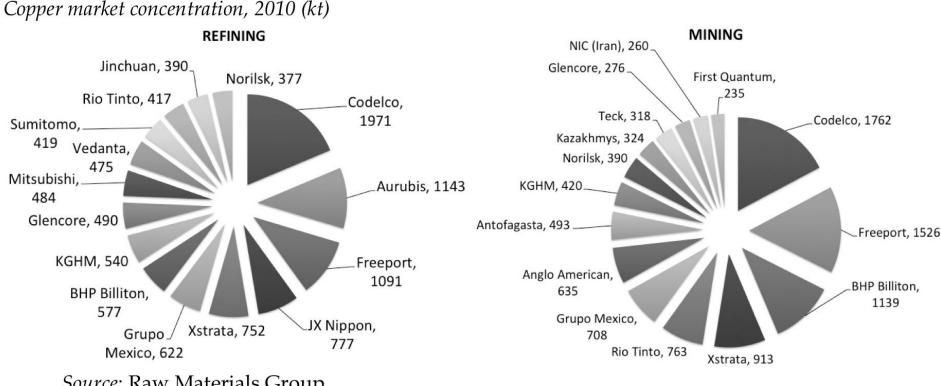
€bn – End 2011	Notional value	Gross value (fair value)*	Total assets	Revenues	% Notional/ Total assets	% Gross/ Total assets	Ratio Gross/ Revenues
Morgan Stanley	607.07	61.60	579.00	25.02	104.85%	10 64%	2 46
Goldman Sachs	614.91	57.51	712.82	2.25	86.26%	.07%	2.59
JP Morgan	859.35	90.62	1,749.42	75.07	49.12%	5.18%	1.21
Barclays	857.09	26.89	1,876.86	38.76	45.67%	1.43%	0.69
Bank of America	639.22	29.65	1,643.84	72.91	38.89%	1.80%	0.41
Credit Suisse	281.62	n/a	862.41	21.56	32.65%	n/a	n/a
Société Générale	343.09	17.06	1,181.37	25.64	29.04%	1.44%	0.67
Deutsche Bank**	459.13	44.36	2,164.10	33.23	21.22%	2.05%	1.34
Citigroup	221.11	21.92	1,446.82	60.50	15.28%	1.52%	0.36
BNP Paribas**	156.29	13.75	1,965.28	42.38	7.95%	0.70%	0.32
Credit Agricole	69.79	8.50	1,860.00	35.13	3.75%	0.46%	0.24
HSBC	59.06	2.85	1,973.16	46.44	2.99%	0.14%	0.06
Tot.	5,167.72	374.71	18,015.09	498.88	49.71%^	3.9%^	1.15^
Global OTC	2,57	405	-	-	-	-	-
Global ETD***	3,585	-	-	-	-	-	-

Source: 2011 Annual reports, SEC K10 files, BIS (2013 update), WFE/IOMA. *Before netting adjustments. ^Weighted average (notional). "Estimates. ***Conservative estimate of value of traded futures and options contracts.

Growth of new market actors

...gave easy access to financial leverage to exploit returns...

Key trading companies by total revenues, 2003 vs. 2011 (\$bn)

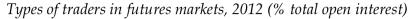

		Ownership	Country	Total	assets	Total re	evenues	
				2003	2011	2003	2011	2003-11 CAGR
1	Vitol	Private	Netherlands	na	na	61*	297.00	22%*
2	Glencore	Public	Switzerland	59.90**	86.16	142.34**	186.15	-
3	Trafigura	Private	Netherlands	na	na	na	121.50	-
4	Noble group	Public	Hong Kong	1.07	17.34	4.28	80.73	44%
5	Gunvor International	Private	Cyprus	na	na	na	80.00	-
6	Mercuria	Private	Switzerland	na	na	na	75.00	-
7	Marubeni***	Public	Japan	41	65	75.2	55.63	-
8	Xstrata	Public	Switzerland- UK	10.00	74.83	3.47	33.88	33%
9	Marquard & Bahls AG	Private	Germany	0.78	5.63	5.44	25.84	22%
10	System Capital	Private	Ukraine	na	28.45	na	19.55	-

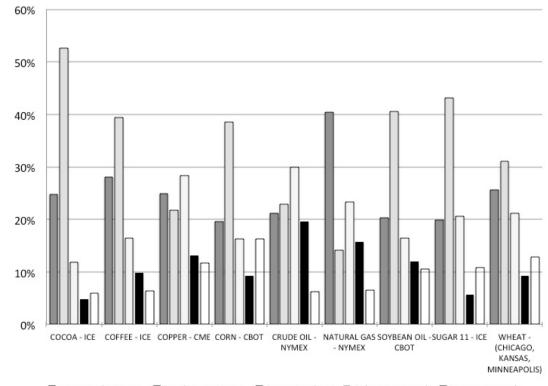
Source: Author's selection from websites, annual reports and OANDA. Note: *2004 data; **2007 data; *Fiscal year 2013 © Valiante E ended in March 2012. Exchange rate with USD is yearly average.

Example: Copper

53

Too-physical-to-fail? \rightarrow Glencore-Xstrata

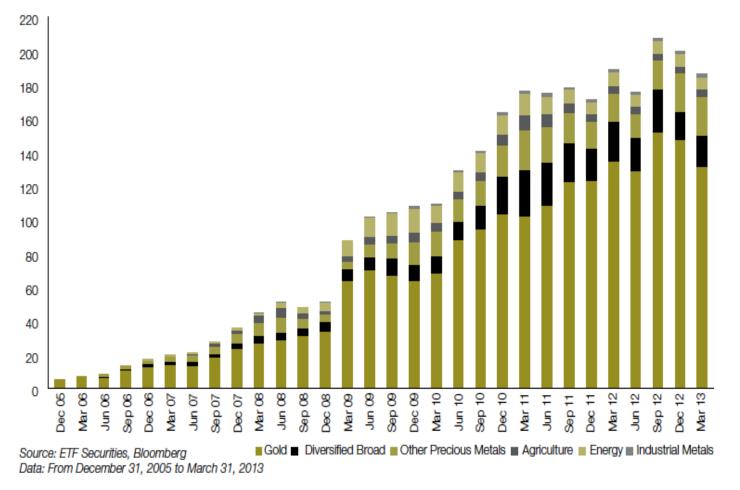



Source: Raw Materials Group.

Financial participants (1)

54

Since early 2000s, returns in international commodities trade lured financial participants in...

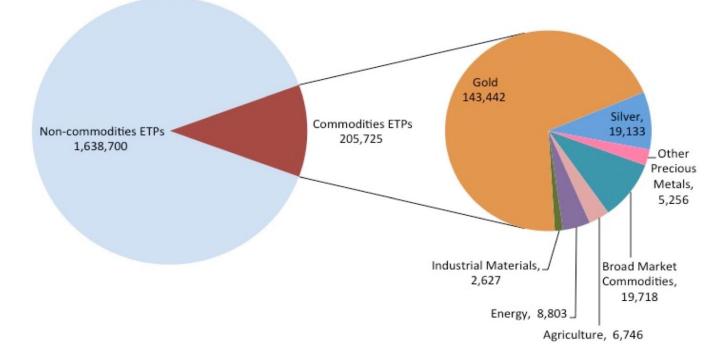


2013 © Valiante Dieg

Source: Author's elaboration from CFTC. Note: sum of long and short positions in 2012.

Financial participants (2)

…and more passive investments…

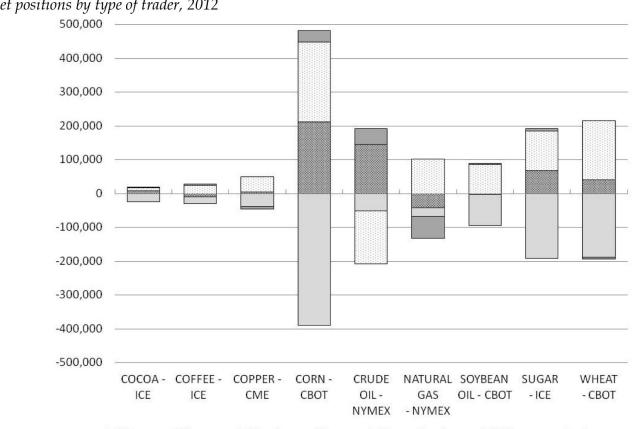

2013 © Valiante Diego – Centre for European Policy Studies

Financial participants (3)

56

...but limited involvement in size so far...

Breakdown of commodities ETPs per underlying exposure, Q3 2012 (US\$ million)



Source: Blackrock ETP Landscape.

Financial participants (4)

57

□ ... and limited net positions.

Net positions by type of trader, 2012

Managed Money Producers-Users Swap Dealers Other reported Source: Author's calculation from CFTC. Note: Difference between equally weighted average of 2013 © Valiante Diegdong and short positions in 2012.

... but the situation has raised concerns about the process of <u>financialisation</u>...

Financialisation

- 59
- 'Financialisation' is the process of <u>alignment of commodities</u> <u>returns with pure financial assets</u> ('pooling effect'), so increasing co-movements among asset classes that have been historically seen as following opposite causal pattern. This process began well before the financial crisis, but it has speeded up over the years.
- □ On top of:
 - International trade (WTO commitments and global capital flows)
 - Technological developments
- …access to credit!
 - Accommodating monetary policies
 - Frankel (2006) → low real interest rates may push real commodities prices up by increasing interest in piling up inventories (carry trade)
 - Early evidence of counter-cyclical nature of commodities (Gorton and Rouwenhorst, 2004)

Financialisation (2)

- It is the <u>combined effect</u> of the three market developments above that have international commodities markets possible
- □ Three policy concerns are examined:

 - \square Financial positions leading commercial positions ightarrow No
 - \square Size of financial over physical \rightarrow Depends

Financialisation (3)

□ The link with S&P 500...

Link between commodities prices and financial indexes before and after 2002

	Before 2002	After 2002	Whole sample	Model
Crude oil	No	Yes	No	ARCH
Natural Gas	No	No	No	ARIMA, Granger
Iron ore	-	-	-	-
Aluminium*	No	Yes	Yes*	ARCH, OLS
Copper	No	Yes	No	ARCH, OLS
Wheat	No	Yes	No	ARIMA, OLS
Corn	No	Yes	No	OLS
Soybean oil	No	Yes	Yes	ARCH, OLS
Sugar	-	-	-	-
Cocoa	Yes**	Yes**	Yes**	OLS
Coffee	No	Yes**	No	OLS

Note: *both ways, **Rejection at 10% level. Data up to 2011/2012. *Source*: Author.

2013 ©

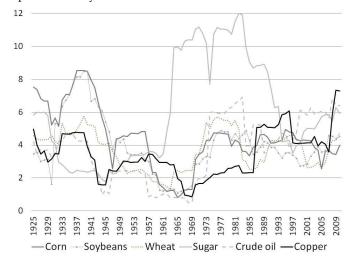
Financialisation (4)

□ ...and its volatility...

Granger causality test summary

Dependent Variable	Independent Variable	1992-2011	1992-2001	2002-2011
Commercial	VIX	Yes*	No	Yes***
VIX	Commercial	No	No	No
Non-commercial	VIX	No	No	No
VIX	Non-commercial	No	No	No
Non-commercial Long	VIX	Yes***	No	Yes
VIX	Non-commercial Long	No	No	No

Note: *1% **5% ***10% significance (p-value). 997 observations. See Annex for more details. *Source*: Author's calculations.


Financialisation (5)

Volatility analysis and S&P 500 correlation

Periods	TRJ-CRB Total Return Index volatility*	FAO Real Price Index volatility**	CRB-TR Index / S&P 500 Annualised correlation
2000-2007	0.16	0.25	0.01
2008-2012	0.22	0.53	0.42
2008-2009	0.26	0.65	0.37
2010-2012	0.18	0.45	0.55

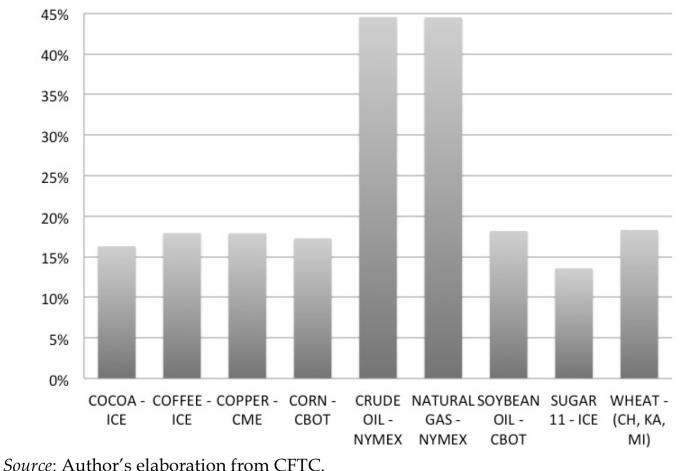
Source: Author's calculation from Thomson Reuters – Jefferies CRB index website, FAO Stats, IMF and Yahoo Finance. Note: Equally weighted averages of 1 year rolling volatility, as measured in footnote. *Daily data. **Monthly data. Historical real price volatility, 1925-2010*

- Short-term volatility has increased...
- ...but long-term volatility still remains within a range...

2013 © Valiante Diego – Centre for European Policy Studies

Source: Author's calculation from Bloomberg, IMF, Morgan Stanley Commodities. Note: *Tenyears annualised rolling volatility. Annual data. 1915=100

Financialisation (6)

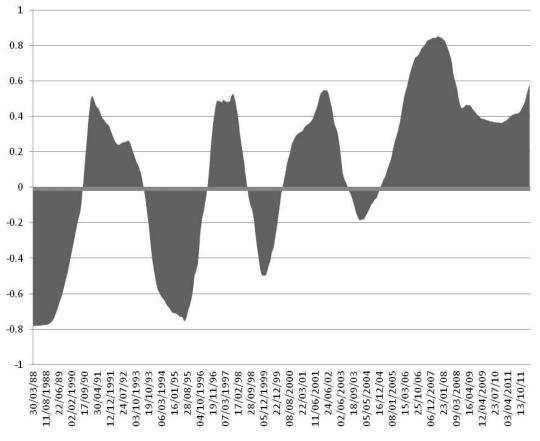

- Commercial and non-commercial positions...
 - Crude oil data (WTI, NYMEX)
- Why crude oil?
 - Financial participants
 - Full dataset from CFTC

Source: Authors from websites, annual reports and OANDA. Note: Exchange rate with USD is yearly average. *2005 data, **2006 data, ***2010 data.

Financialisation (7)

65

Spread trading, 2012 (% total open interest)


Source: Author's elaboration from CFT

^{2013 ©} Valiante Diego – Centre for European Policy Studies

Financialisation (8)

66

…anomalies in price trends raise questions!

Source: Author's calculation. Note: daily data.

Financialisation (9)

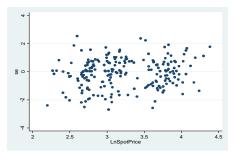
(a) 1983-2002

WTI regression with S&P 500

ARCH family regression

Sample: 2 - 226, but with gaps Distribution: Gaussian Log likelihood = 238.9838					Number of obs = Wald chi2(1) = Prob > chi2 = (
			OPG				
D. Inspotpri	ce	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
lnspotpric Insp5 D _co	00 1.	1061058 .0000212	.0893056 .0037056	-1.19 0.01	0.235 0.995	2811414 0072416	.0689299 .007284
gar	1. ch 1.	.4375194 .6186613 .0003804	.0817145 .0518285 .0002303	5.35 11.94 1.65	0.000	.2773618 .5170792 000071	. 5976769 . 7202434 . 0008319

Portmanteau test for white noise


Portmanteau (Q)	statistic =	27.4271
Prob > chi2(40)	=	0.9346

(b) 2002-2011

ARCH family regression

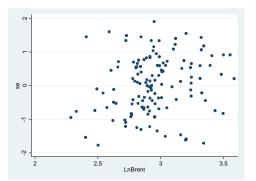
Sample: 97 - 216	Number of obs	=	120
Distribution: Gaussian		=	25.09
Log likelihood = 120.2889	Prob > chi2	=	0.0000

-		OPG				
D. Inspotprice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Inspotprice Insp500 D1. _cons	.8139862 .0101848	.1625204 .0075652	5.01 1.35	0.000 0.178	.4954521 0046427	1.13252 .0250124
ARCH arch L1. garch L1. _cons	.2639878 .6344791 .000961	.1461696 .1515962 .0007915	1.81 4.19 1.21	0.071 0.000 0.225	0224994 .3373561 0005904	.550475 .9316021 .0025124

Portmanteau test for white noise

Portmanteau (Q)	statistic	=	48.3593
Prob > chi2(40)		=	0.1711

2013 © Valiante Diego – Centre for European Policy Studies


Financialisation (10)

Brent regression with S&P 500

(a) 1994-2002

ARCH family regression

Distribution:	mple: 2 - 144, but with gaps Number of obs stribution: Gaussian Wald chi2(1) g likelihood = 137.1215 Prob > chi2						
D.lnbrent	Coef.	OPG Std. Err.	z	P> z	[95% Con	f. 1	Interval]
Inbrent Insp500 D1. _cons	2912692 0029828	.2043234 .0080204	-1.43 -0.37	0.154 0.710	6917357 0187025		.1091973
ARCH arch L1. _cons	.3288481 .0059298	.1234064 .0010507	2.66 5.64	0.008	.0869759 .0038704		.5707202

Portmanteau test for white noise

Portmanteau (Q)	statistic =	43.3522
Prob > chi2(40)	=	0.3304

(b) 2002-2011

Linear regression Number of obs = 120 F(1, 118) 8.09 Prob > F 0.0052 = R-squared 0.1173 = .08988 Root MSE Robust D. Inbrentprice [95% Conf. Interval] Coef. Std. Err. P>|t| t

				1 - 1		
lnsp500 LD. _cons	.6984865 .0107565	.2455714 .0082453	2.84 1.30	0.005 0.195	.2121883 0055714	1.184785 .0270844

. omninorm res

(n = 214)	D-H	P-value	asy.	P-value
Residuals	7.1661	0.0278	7.5903	0.0225

Ramsey RESET test using powers of the fitted values of D.lnbrentprice Ho: model has no omitted variables F(3, 115) = 242

·(J, 11J) –	£.7£
Prob >	F =	0.0701

2013 © Valiante Diego – Centre for European Policy Studies

Financialisation (11)

M2 leads futures positions (VEC analysis)

Source	SS	df		MS		Number of obs F(3. 306)		Source	SS	df	r	MS		Number of obs =		
Model Residual	.177201164 1.89063841	3 306		067055 178557		Prob > F R-squared Adj R-squared	= 0.0000 = 0.0857	Model Residual	1.90503788 13.4892931	3 306	.6350			F(3, 306) = Prob > F = R-squared = Adj R-squared =	0.000	0 7
Total	2.06783957	309	.006	692037		Root MSE	= .0786	Total	15.394331	309	.0498	19841			.2099	
D.COMMTOT	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]	D.NONCOMMTOT	Coef.	Std. E	Err.	t	P> t	[95% Conf. I	nterval]
COMMTOT LD. lnm2	104876	.0548	934	-1.91	0.057	2128924	.0031404	NONCOMMTOT LD. lnm2	1301126	.05648	883	-2.30	0.022	2412674 -	.0189579	9
D1.	-2.367319	1.075	996	-2.20	0.029	-4.484607	2500303	D1. coin2	-2.868	2.8438	353	-1.01	0.314	-8.463982	2.727982	2
coin1 L1. _cons	0812382 .0205437	.0178 .006		-4.54 3.18	0.000 0.002	1164428 .0078301	0460336 .0332574	L1. _cons	.0255268	.03657		-5.01 1.49	0.000 0.138	255226 - 0082566	.1112970	
Source	SS	df		MS		Number of obs F(3, 306)		Source	SS	df	:	MS		Number of o F(3, 30		310 2.11
Model Residual	.000257564 .005211015	3 306		085855 017029		Prob > F R-squared	= 0.0020 = 0.0471	Model Residual	.00011082			0036941 0017509		Prob > F R-squared Adj R-squar	= 0	.0990 .0203 .0107
Total	.005468579	309	.000	017698		Adj R-squared Root MSE	= 0.0378 = .00413	Total	.005468579	9 309	.00	0017698		Root MSE		00418
D.lnm2	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]	D.lnm2	Coef.	Std.	Err.	t	P> 1	t [95% Con	f. Inte	rval]
lnm2 LD. commTOT	.0947919	.0571	094	1.66	0.098	017585	.2071687	lnm2 LD. NONcommTOT	.1317168	.056	57432	2.32	2 0.02	.0200606	.2	43373
D1. coin1	006499	.0029	625	-2.19	0.029	0123284	0006696	D1. coin2	0011387	.001	1296	-1.01	1 0.31	140033616	.00	10841
L1. _cons	0026633 .0039853	.0009		-2.73 11.60	0.007 0.000	004582 .0033093	0007446 .0046612	L1. 	.0000999 .0037679		7302 3417	0.14 11.03				15368 44402

Financialisation (12)

70

Commercial short leads non-commercial long (VEC analysis)

Source	SS	df		MS		Number of obs = 310 F(3, 306) = 40.03
Model Residual	13.4038046 34.153502	3 306		793487 612752		Prob > F = 0.0000 R-squared = 0.2818 Adj R-squared = 0.2748
Total	47.5573066	309	.153	907141		Root MSE = .33408
D.						
NONCOMMLONG	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
NONCOMMLONG						
LD.	1039714	.0501	L897	-2.07	0.039	2027320052108
COMMSHORT						
D1.	1.753686	.1919	9461	9.14	0.000	1.375985 2.131387
coin5 L1.	1598455	.0332	0.70E	-4.81	0.000	22523080944602
_cons	0038412	.0190		-0.20	0.841	0413745 .0336921
	10030412	.0150	// 45	0.20	0.041	
Source	SS	df		MS		Number of obs = 310 F(4. 305) = 24.17
Model	.729358602	4	.182	339651		Prob > F = 0.0000
Residual	2.30139603	305		545561		R-squared = 0.2407
Total	3.03075463	309	000	808267		Adj R-squared = 0.2307 Root MSE = .08687
TOLAT	5.05075405	309	.005	000207		ROOL MSE = .00087
D.COMMSHORT	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
COMMSHORT						
LD.	1805889	.055	9078	-3.23	0.001	29060280705751
NONCOMMLONG	120202	01.2	1004	0.10	a	0040410 4460440
D1. LD.	.120293	.013		9.12 2.01	0.000	.0943413 .1462448 .0005981 .0582432
coin5	.0234207	.014	0473	2.01	0.045	.0003901 .0382432
L1.	.018442	.008		2.07	0.039	.0008952 .0359888
_cons	.0092288	.004	9606	1.86	0.064	0005325 .0189901

2013 © Valiante Diego – Centre for European Policy Studies

Financialisation (13)

Also new CFTC reports confirm previous analysis based on legacy reports...

Granger causality tests

Variables	Granger causality Rev				Reversed	
Independent→Dependent	Crude oil	Natural gas	Corn	Crude oil	Natural gas	Corn
M2 \rightarrow SD/MM long	Yes*	No	No	No	No	Yes***
M2 \rightarrow Producers short	No	Yes*	Yes*	No	Yes*	No
Producers short \rightarrow SD/MM long	Yes**	Yes**	Yes**	No	No	No

Note: *1%, **5%, ***10% significance. 'SD/MM' stands for 'Swap dealers/Managed money'.

Financialisation (14)

72

Size of financial markets over physical markets? Volumes...

	Futures volume	Futures contract (venue)	2011 global production	Ratio futures/physical	Unit
Corn	8,142,408,531	5k bushels (CBOT)	814,256,000	9.99	tonnes
Cocoa	39,072,420	10 tonnes (LIFFE)	3,899,657	10.02	tonnes
Soybean oil	289,710,107	60k pounds (CBOT)	41,174,000	7.03	tonnes
Natural gas	746,722,190	10k mmBtu Henry Hub (NYMEX)	122,338,445	6.1	bn BTU
Crude oil	163,419,527,000	1k bbl WTI (NYMEX)	32,266,000,000	5.06	bbl
Coffee	34,977,640	10 tonnes Robusta (LIFFE)	8,063,160	4.34	tonnes
Wheat	1,630,041,328	5k bushels (CBOT)	653,000,000	2.5	tonnes

Benchmark futures contracts volumes and ratio over equivalent physical production

Source: Author's calculations from various sources. Note: Volume of futures contracts for the year 2011 (number of contracts) with maturity up to 12 months. Data on volumes for crude oil, natural gas, cocoa, coffee may double if the other available liquid futures contract for each of these ²⁰¹³ © commodities (run by ICE) is included. Conservative estimates.

Financialisation (15)

- …and open interest
 - More comparable numbers

	90 th percentile	Open Interest (in production unit)	Futures contracts	Equivalent global Production	Ratio financial/physical
Natural Gas	8 months (NYMEX)	12,954,716	NYMEX - ICE	81,558,963 (bn BTU)	15.8%
Crude oil	25 months (NYMEX)	3,248,147,760	WTI - Brent	67,220,833,333 (bbl)	4.8%
Copper	8 months (NYMEX)	6,339,000,000	LME	23,516,000,000 (pounds)	26.96%
Aluminium	n/a (LME)	18,403,025	LME	43,989,000* (tonnes)	41.84%
Сосоа	13 months (LIFFE)	3,304,711	LIFFE - ICE	4,223,917 (tonnes)	78.2%
Coffee	6 months (LIFFE)	2,921,640	LIFFE - ICE	1,343,860 (tonnes)	217.4%
Corn	11 months (CBOT)	305,474,466	CBOT	746,401,333 (tonnes)	40.09%
Soybean oil	6 months (CBOT)	2,897,568	CBOT	20,587,000 (tonnes)	14%
Wheat	10 months (CBOT)	115,932,656	CBOT	544,166,667 (tonnes)	21.3%
White sugar	9 months (LIFFE)	3,443,950	LIFFE	126,361,500 (tonnes)	2.73%

Benchmark futures contracts open interest and ratio over equivalent physical production

Note: conservative estimates. *12 months production.

Source: Author's calculation from CME, LME, LIFFE, ICE, Goldman Sachs Research, BP, CRB Commodity Yearbook. Conservative estimates.

Some policy conclusions

Some policy conclusions

- Internationalisation comes at cost...but ready to give it up?
 - Growing interconnection...
 - Higher pro-cyclicality and interconnection with financial system (financialisation)
 - New systemically important actors (e.g., trading houses and governments)
 -but...
 - International markets and trade
 - Era of low prices and supply security
 - No distortion on price formation from financial participation
- Role of financial participants is benign and instrumental in supporting international commodities trade

Some policy conclusions (2)

- No one-size-fits-all approach
- Role of inventories/delivery management
 - Cross-border supervision and coordination across areas of competence
- Ensuring the well-functioning of internationally recognised benchmarks...
 - Public accountability of assessments
 - Liquid underlying physical markets
 - Proper oversight of warehousing rules
- Working on safeguards
 - Short-term trading practices (volumes-based)
 - Well-functioning of market infrastructure
 - Competitive setting
 - Transparency of physical holdings

Attention to the incentive design to limit moral hazard (e.g. JODI) 2013 © Valiante Diego – Centre for European Policy Studies

Thank you!

diego.valiante@ceps.eu

Suggested citation: Valiante, D. (2013), "Commodities Price Formation: Financialisation and Beyond", CEPS-ECMI Task Force Report, Centre for European Policy Studies Paperback, Brussels.

77

2013 $\ensuremath{\mathbb{C}}$ Valiante Diego – Centre for European Policy Studies

Annex

Trading intents (1)

- The investment strategies in commodities are manifold. They can be clustered, however, in a few areas:
 - Hedging (e.g. commercial users or swap dealer)
 - Funding (e.g. index investing)
 - Arbitraging (e.g. spread trading)
 - Information trading (e.g. index investing)
- Two important market developments in recent years may have led to the growth of index investing:
 - Growing funding needs of financial institutions and business diversification (sell-side).
 - Diversification of risk strategies (buy-side).

Trading intents (2)

Comparing investment objectives

	PROs	CONs	
Hedging	Risk protection and predictability	Costly	
Funding	Liquidity relief	Indirect costs on operations	
Arbitrage	Risk-free gain and price efficiency	Occasional	
Informed trading	Investing in information, which flows into prices	Risky	
Source: Author.			