The Failure of a Clearinghouse: Empirical Evidence

Vincent Bignon Guillaume Vuillemey

Banque de France HEC Paris & CEPR

European Capital Markets Institute Brussels

November 2017

• Central clearing counterparties (CCPs) become widespread

CCPs expected to improve financial stability

CCPs insure counterparty risk; netting benefits

New risk: CCP default

- Dramatic effects on markets and macro stability (Duffie, 2015)
- LCH Swapclear: 269 trillion USD outstanding
- Rare events: Three cases known in history, no existing study

New risk: CCP default

- Dramatic effects on markets and macro stability (Duffie, 2015)
- LCH Swapclear: 269 trillion USD outstanding
- Rare events: Three cases known in history, no existing study

This paper: First empirical evidence on CCP default

- Failure of CCP in Paris Commodity Exchange in 1974
- Unique descriptive evidence: novel, hand-collected, archive data
- CCP risk management outside and around distress

New risk: CCP default

- Dramatic effects on markets and macro stability (Duffie, 2015)
- LCH Swapclear: 269 trillion USD outstanding
- Rare events: Three cases known in history, no existing study

This paper: First empirical evidence on CCP default

- Failure of CCP in Paris Commodity Exchange in 1974
- Unique descriptive evidence: novel, hand-collected, archive data
- CCP risk management outside and around distress

Implications: CCP capital structure & default management

Matched book

Out-of-the-money transactions Collateral held	In-the-money transactions Amounts owing to members
Other assets	Equity

- Matched book
- Indifferent to settlement prices

Out-of-the-money transactions Collateral held	In-the-money transactions Amounts owing to members
Other assets	Equity

Matched book

 Indifferent to settlement prices

New out-of-the money	New in-the-money				
Out-of-the-money transactions Collateral held	In-the-money transactions Amounts owing to members				
Other assets	Equity				

Matched	book

 Indifferent to settlement prices

Low equity

New out-of-the money	New in-the-money
Out-of-the-money transactions Collateral held	In-the-money transactions Amounts owing to members
Other assets	Equity

Theory of CCP risk management

Charter value effect

- Preserve cash flows associated with continuation of CCP
- Be tough with distressed member
- \blacksquare \rightarrow Protect surviving members

Theory of CCP risk management

Charter value effect

- Preserve cash flows associated with continuation of CCP
- Be tough with distressed member
- \blacksquare \rightarrow Protect surviving members

Risk-shifting effect

- Strict risk management: Equity may be impaired
- Lenient risk-management: Equity may be preserved
- Ex: If a price reversal occurs
- Risk-shifting: Be lenient with distressed member
- \blacksquare \rightarrow At the expense of surviving members

The market

Paris Commodity Exchange

- Futures on sugar, cocoa, coffee
- \blacksquare Trading through 35 registered brokers \rightarrow Also clearing members
- Execute orders on behalf of clients, including retail investors
- Short positions: commodity producers; long positions: retail investors

The market

Paris Commodity Exchange

- Futures on sugar, cocoa, coffee
- \blacksquare Trading through 35 registered brokers \rightarrow Also clearing members
- Execute orders on behalf of clients, including retail investors
- Short positions: commodity producers; long positions: retail investors

CCP: Caisse de Liquidation des Affaires en Marchandises (CLAM)

- \blacksquare All trades centrally cleared \rightarrow CLAM takes counterparty risk
- Risk managed by calling initial + variation margins
 - Initial margins: Paid at initiation of contract
 - Variation margins: Called daily based on price fluctuations
- If default on margins: Liquidate member's position
- If loss: equity absorbs; no additional waterfall

The 1974 sugar price boom

- Nov. 1973 Nov. 1974: Six fold increase in global sugar prices
 - **1**,300 to 8,100 FRF: 1 1974 FRF \approx 0.85 2015 USD
 - Limited free market + Embargoes + Bad crops + Fear of shortage

The 1974 sugar crisis

Boom in sugar prices: Until Nov. 21st, 1974

- Increase in trading activity: From 54,000 to 1.9m tons / month [See]
- 96.9% of retail investors hold long positions

The 1974 sugar crisis

- Boom in sugar prices: Until Nov. 21st, 1974
 - Increase in trading activity: From 54,000 to 1.9m tons / month [See]
 - 96.9% of retail investors hold long positions
- Fall in sugar prices: Nov. 21st to Dec. 2nd, 1974
 - One broker, Nataf, holds 56% of the long open position
 - Limit down prevents execution of sell orders
 - Nataf fails on variation margin calls
 - CLAM waits until shortfall > initial margins to declare default

The 1974 sugar crisis

- Boom in sugar prices: Until Nov. 21st, 1974
 - Increase in trading activity: From 54,000 to 1.9m tons / month [See]
 - 96.9% of retail investors hold long positions
- Fall in sugar prices: Nov. 21st to Dec. 2nd, 1974
 - One broker, Nataf, holds 56% of the long open position
 - Limit down prevents execution of sell orders
 - Nataf fails on variation margin calls
 - CLAM waits until shortfall > initial margins to declare default
- Closure of sugar market: Dec. 3rd, 1974 to Jan. 1976
 - Market closes under pressure of CLAM + registered brokers
 - Negotiation + Judicial battle about loss allocation
 - Resolution of the CLAM, re-open with new CCP

Archive data

Department of Commerce + Paris Chamber of Commerce

- Legal, judicial and statistical documents, notes, confidential reports
- \blacksquare \rightarrow Exposures of CLAM, brokers and investors
- \blacksquare \rightarrow Account and transactions by Nataf
- \blacksquare \rightarrow Financial position on all of Nataf's clients

Bank of France

- Supervisory reports and notes
- Balance sheet data
- Stock price data from Cours authentique et officiel

Sugar price data from *Les Echos*.

Spot/future in Paris, London and New York

First cause of failure: Pool of investors

- Buyers of futures: Mostly retail investors
 - Policies to encourage retail participation
- High turnover: Buy at high prices

	Min	$10 \mathrm{pc}$	$25 \mathrm{pc}$	$50 \mathrm{pc}$	Mean	$75 \mathrm{pc}$	$90 \mathrm{pc}$	Max
Average buy price	2,084	4,879	5,525	6,201	6,080	6,784	7,275	8,005
Month	Jan.	Oct.	Oct.	Nov.	Nov.	Nov.	Nov.	Nov.

Massive retail investor defaults

At 6,217 FRF/ton: 49.6% of defaults

No retail trading in London and New York

- Diversified and sophisticated financial institutions
- Same price dynamics did not trigger investor defaults

- Was risk management lenient during the boom?
 - Data on all changes in initial margins in 1974

Initial margin in FRF per ton of sugar

Initial margin / Nearest-term future sugar price

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

Initial margins increased, scaled with level of sugar prices

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher [See]

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher [See]
- Value-at-Risk (VaR) / Initial margin decreasing [See]

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher [See]
- Value-at-Risk (VaR) / Initial margin decreasing [See]
- Margins higher than in London and New York

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher [See]
- Value-at-Risk (VaR) / Initial margin decreasing [See]
- Margins higher than in London and New York

Quality of margins

Margins paid in cash or with bank guarantees (letters of credit)

Balance on CCP account = Deposited capital + External bank guarantees -Initial margins - Variation margins

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher
- Value-at-Risk (VaR) / Initial margin decreasing
- Margins higher than in London and New York

Quality of margins

- Margins paid in cash or with bank guarantees (letters of credit)
- Nataf's account: Cash increases from 40.1% to 67.8% of margins

Was risk management lenient during the boom?

Data on all changes in initial margins in 1974

Quantity of margins

- Initial margins increased, scaled with level of sugar prices
- Volatility not significantly higher
- Value-at-Risk (VaR) / Initial margin decreasing
- Margins higher than in London and New York

Quality of margins

- Margins paid in cash or with bank guarantees (letters of credit)
- Nataf's account: Cash increases from 40.1% to 67.8% of margins

Average margin levels were well-managed

Build-up of large position (Nataf)

- 56% of CCP exposure on day of default
- CLAM did not use potential member-specific surcharges

- Theory: Rationales for penalizing large exposures
 - 10% initial margins sufficient if liquidation at limit down
 - But: Limit down are not market clearing prices
 - Liquidating (large) exposures subject to frictions
■ 12 changes in margins in 1974, including 9 increases

- 12 changes in margins in 1974, including 9 increases
- **CLAM is listed**: 10 years of daily stock price data [See]
 - \blacksquare Pro: Higher margins \rightarrow Less CCP risk
 - \blacksquare Con: Higher margins \rightarrow Less trading volume & clearing fees

- 12 changes in margins in 1974, including 9 increases
- **CLAM is listed**: 10 years of daily stock price data [See]
 - \blacksquare Pro: Higher margins \rightarrow Less CCP risk
 - \blacksquare Con: Higher margins \rightarrow Less trading volume & clearing fees
- Stock price around increases in initial margins (denoted τ)

$$AR_{it} = R_{it} - \hat{R}_{it}$$
 where $\hat{R}_{it} = \hat{\alpha}_i + \hat{\beta}_i R_{mt}$.

- 12 changes in margins in 1974, including 9 increases
- CLAM is listed: 10 years of daily stock price data [See]
 - \blacksquare Pro: Higher margins \rightarrow Less CCP risk
 - \blacksquare Con: Higher margins \rightarrow Less trading volume & clearing fees
- Stock price around increases in initial margins (denoted τ)

$$AR_{it} = R_{it} - \hat{R}_{it}$$
 where $\hat{R}_{it} = \hat{\alpha}_i + \hat{\beta}_i R_{mt}$.

Cumulative abnormal return from $\tau - 5$ to $\tau + 5$

$$C\bar{A}R(\tau-5,\bar{\tau}) = \sum_{t=\tau-5}^{\bar{\tau}} \left(\frac{1}{N}\sum_{i=1}^{N}AR_{it}\right).$$

	Cumulative abnormal	95% confidence	p-value
	return	interval	
$\tau - 5$	-0.001	[-0.014;0.011]	0.590
$\tau - 4$	0.001	[-0.020; 0.021]	0.471
$\tau - 3$	-0.000	[-0.021; 0.020]	0.521
$\tau - 2$	-0.004	[-0.028; 0.020]	0.658
$\tau - 1$	-0.000	[-0.028; 0.028]	0.504
au	0.006	[-0.025;0.036]	0.336
$\tau + 1$	0.006	[-0.025; 0.036]	0.331
$\tau + 2$	0.013*	[-0.009;0.035]	0.097
$\tau + 3$	0.017**	[0.001 ; 0.034]	0.022
$\tau + 4$	0.013*	[-0.005;0.032]	0.067
$\tau + 5$	0.023***	[0.007 ; 0.039]	0.006

2.3% cumulative abnormal return after 5 days

	Cumulative abnormal	95% confidence	p-value
	return	interval	
$\tau - 5$	-0.001	[-0.014;0.011]	0.590
$\tau - 4$	0.001	[-0.020; 0.021]	0.471
$\tau - 3$	-0.000	[-0.021; 0.020]	0.521
$\tau - 2$	-0.004	[-0.028; 0.020]	0.658
$\tau - 1$	-0.000	[-0.028; 0.028]	0.504
au	0.006	[-0.025; 0.036]	0.336
$\tau + 1$	0.006	[-0.025; 0.036]	0.331
$\tau + 2$	0.013*	[-0.009; 0.035]	0.097
$\tau + 3$	0.017**	[0.001 ; 0.034]	0.022
$\tau + 4$	0.013*	[-0.005;0.032]	0.067
$\tau + 5$	0.023***	[0.007 ; 0.039]	0.006

2.3% cumulative abnormal return after 5 days

Implied probability of default is non-zero

Nov. 21st, 1974: Sugar prices collapse \rightarrow Severe distortions

Nataf's balance turns negative

- Nov. 21st, 1974: Sugar prices collapse \rightarrow Severe distortions
 - Nataf's balance turns negative

CLAM delays declaration of Nataf's default

- First days: Unclear whether shortfall due to operational delays
 - Supervisor: "Nataf paid margins as no other broker before him did, covering not only variation margins with cash, but also a large part of initial margins and, for certain days, all initial margins or more"
- Later: Clear that shortfall due to unusual price movements
- \blacksquare \rightarrow Liquidation of defaulted position also delayed

- Nov. 21st, 1974: Sugar prices collapse \rightarrow Severe distortions
 - Nataf's balance turns negative

CLAM delays declaration of Nataf's default

- First days: Unclear whether shortfall due to operational delays
 - Supervisor: "Nataf paid margins as no other broker before him did, covering not only variation margins with cash, but also a large part of initial margins and, for certain days, all initial margins or more"
- Later: Clear that shortfall due to unusual price movements
- \blacksquare \rightarrow Liquidation of defaulted position also delayed

CLAM continues to register trades by Nataf

In contradiction with CLAM rule book

- Nov. 21st, 1974: Sugar prices collapse \rightarrow Severe distortions
 - Nataf's balance turns negative

CLAM delays declaration of Nataf's default

- First days: Unclear whether shortfall due to operational delays
 - Supervisor: "Nataf paid margins as no other broker before him did, covering not only variation margins with cash, but also a large part of initial margins and, for certain days, all initial margins or more"
- Later: Clear that shortfall due to unusual price movements
- \blacksquare \rightarrow Liquidation of defaulted position also delayed

CLAM continues to register trades by Nataf

In contradiction with CLAM rule book

\blacksquare \rightarrow CLAM is acting to protect Nataf

• Outside distress: Brokers indifferent to execution prices for clients

- Outside distress: Brokers indifferent to execution prices for clients
- Close to distress: Some clients pay margins, some close to default
 - Data on all trades excuted by Nataf on behalf of clients
 - Data on the financial position of all of Nataf's clients

- Outside distress: Brokers indifferent to execution prices for clients
- Close to distress: Some clients pay margins, some close to default
 - Data on all trades excuted by Nataf on behalf of clients
 - Data on the financial position of all of Nataf's clients
- Distorted incentives: Better execution for clients close to default

Exec. price_{*i*,*j*,*m*,*t*} = $\beta_0 \cdot \text{Exposure}_{i,t} + \beta_1 \cdot \text{Volume}_{i,j,m,t} + FE_m + FE_t + \epsilon_{i,j,m,t}$

- Outside distress: Brokers indifferent to execution prices for clients
- Close to distress: Some clients pay margins, some close to default
 - Data on all trades excuted by Nataf on behalf of clients
 - Data on the financial position of all of Nataf's clients
- Distorted incentives: Better execution for clients close to default

Exec. price_{*i*,*j*,*m*,*t*} = $\beta_0 \cdot \text{Exposure}_{i,t} + \beta_1 \cdot \text{Volume}_{i,j,m,t} + FE_m + FE_t + \epsilon_{i,j,m,t}$

Channel

- Trades registered at the CLAM at the end of the day
- Rearrange counterparties and prices before novation

	Dependent	variable: E	xecution price	e of buy orders
Avg. exec. price of existing trades	- 0.020 ** (0.028)	- 0.016 * (0.057)		
Size of existing position			- 0.279 *** (0.000)	- 0.247 *** (0.000)
Volume of trade		-0.185*** (0.000)		-0.097** (0.027)
N. Obs. R^2 Fixed effects	69 0.993 D, MAT	69 0.995 D, MAT	74 0.995 D, MAT	74 0.995 D, MAT

Investors close to default get better execution prices

_	Dependent	variable: E	Execution price	of buy orders
Avg. exec. price of existing trades	- 0.020 ** (0.028)	- 0.016 * (0.057)		
Size of existing position			- 0.279 *** (0.000)	- 0.247 *** (0.000)
Volume of trade		-0.185*** (0.000)		-0.097** (0.027)
N. Obs. R^2 Fixed effects	69 0.993 D, MAT	69 0.995 D, MAT	74 0.995 D, MAT	74 0.995 D, MAT

Investors close to default get better execution prices

Results consistent, but less significant, for sell orders

CLAM asks minister to close the market (Dec. 3rd)

- Article 22 sets a settlement price if closure
- Settlement at the average price over past 20 trading days
- Here: 7,400 FRF per ton, above price on Dec. 2nd, 6,200 FRF
- \blacksquare Closure highly debatable \rightarrow Risky bet

CLAM asks minister to close the market (Dec. 3rd)

- Article 22 sets a settlement price if closure
- Settlement at the average price over past 20 trading days
- Here: 7,400 FRF per ton, above price on Dec. 2nd, 6,200 FRF
- \blacksquare Closure highly debatable \rightarrow Risky bet

CLAM refuses renegotiation with sugar professionals

- Refuses proposal to buy Nataf's position at 6,200 FRF
- Refuses proposal at 5,700 FRF (Varsano proposal)

CLAM asks minister to close the market (Dec. 3rd)

- Article 22 sets a settlement price if closure
- Settlement at the average price over past 20 trading days
- Here: 7,400 FRF per ton, above price on Dec. 2nd, 6,200 FRF
- Closure highly debatable \rightarrow Risky bet
- CLAM refuses renegotiation with sugar professionals
 - Refuses proposal to buy Nataf's position at 6,200 FRF
 - Refuses proposal at 5,700 FRF (Varsano proposal)
- Push for Article $22 \rightarrow Manipulate settlement price$

Distortions after default

- All losses absorbed through equity
 - No additional waterfall resources

Distortions after default

- All losses absorbed through equity
 - No additional waterfall resources

Distortions are evidence of risk-shifting

- All losses absorbed by equity: No additional waterfall resources
- If CCP is strict: Equity takes losses, bounded below by zero
- If CCP is lenient: No equity losses if price reversal

Distortions are evidence of risk-shifting

- All losses absorbed by equity: No additional waterfall resources
- If CCP is strict: Equity takes losses, bounded below by zero
- If CCP is lenient: No equity losses if price reversal
- Push for market closure also gamble for resurrection
 - No Article 22: Equity takes losses, bounded below by zero
 - If Article 22: No default by Nataf, no equity losses

Distortions are evidence of risk-shifting

- All losses absorbed by equity: No additional waterfall resources
- If CCP is strict: Equity takes losses, bounded below by zero
- If CCP is lenient: No equity losses if price reversal
- Push for market closure also gamble for resurrection
 - No Article 22: Equity takes losses, bounded below by zero
 - If Article 22: No default by Nataf, no equity losses
- CLAM close to region where equity value function is convex

- Failure to negotiate recovery \rightarrow Administered resolution
 - High sensitivity of equity value to settlement price
 - Administrator appointed after market closure market is deemed illegal

- Failure to negotiate recovery \rightarrow Administered resolution
 - High sensitivity of equity value to settlement price
 - Administrator appointed after market closure market is deemed illegal
- Resolution resembles variation margin gains haircutting
 - Reduce of cancel variation margin payments to parties making gains
 - Positions of sugar sellers settled at 6,017 FRF

- \blacksquare Failure to negotiate recovery \rightarrow Administered resolution
 - High sensitivity of equity value to settlement price
 - Administrator appointed after market closure market is deemed illegal
- Resolution resembles variation margin gains haircutting
 - Reduce of cancel variation margin payments to parties making gains
 - Positions of sugar sellers settled at 6,017 FRF
- **Sugar professionals contribute** on top of margin haircuts
 - 15 million FRF to finance the agreement

- \blacksquare Failure to negotiate recovery \rightarrow Administered resolution
 - High sensitivity of equity value to settlement price
 - Administrator appointed after market closure market is deemed illegal
- Resolution resembles variation margin gains haircutting
 - Reduce of cancel variation margin payments to parties making gains
 - Positions of sugar sellers settled at 6,017 FRF
- **Sugar professionals contribute** on top of margin haircuts
 - 15 million FRF to finance the agreement
- All assets of the CLAM liquidated
 - Large shareholders sell for 1 FRF per share
 - Retail shareholders sell for 100 FRF per share
 - No direct government contribution (but public ownership of banks)

Conclusion and policy implications

Three causes of the CLAM's failure

- Weak pool of ultimate investors
- Large member position
- Risk-shifting incentives

Conclusion and policy implications

Three causes of the CLAM's failure

- Weak pool of ultimate investors
- Large member position
- Risk-shifting incentives

Better CCP capitalization can reduce risk-shifting

Conclusion and policy implications

Three causes of the CLAM's failure

- Weak pool of ultimate investors
- Large member position
- Risk-shifting incentives
- Better CCP capitalization can reduce risk-shifting
- Better CCP governance can reduce risk-shifting
 - More power to members that attach greater value to continuation
 - Member-owned CCPs likely to prefer continuation
 - Rules versus discretion: less likely to delay default

Default waterfall

- Tranches of equity
- Members junior to residual equity (CoCo-like)

Default waterfall

- Tranches of equity
- Members junior to residual equity (CoCo-like)

Mitigate risk-shifting

 Equity not only residual claimant

Default waterfall

- Tranches of equity
- Members junior to residual equity (CoCo-like)

Mitigate risk-shifting

 Equity not only residual claimant

Increase renegotiation set

Lower sensitivity of equity to settlement prices

Default waterfall

- Tranches of equity
- Members junior to residual equity (CoCo-like)

Mitigate risk-shifting

 Equity not only residual claimant

Increase renegotiation set

Lower sensitivity of equity to settlement prices

Trade-off with skin-in-the-game

Optimal design is open question
For more entertainment

Appendix

New transactions registered — Sugar

[Back]

New transactions registered — Coffee and cocoa

CLAM stock price — 1966-1975

[Back]

CLAM stock price around failure

Daily returns on nearest-term contract

Volatility of sugar prices not markedly higher

Vincent Bignon, Guillaume Vuillemey The Failure of a Clearinghouse: Empirical Evidence

Valut-at-Risk (VaR)

[Back]

■ 98% VaR / Initial margin requirement is decreasing

Vincent Bignon, Guillaume Vuillemey The Failure of a Clearinghouse: Empirical Evidence

Open position

Open position / Market capitalization

